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Abstract

For hierarchical clustering, dendrograms are a convenient and powerful visualization tech-
nique. Although many visualization methods have been suggested for partitional clustering,
their usefulness deteriorates quickly with increasing dimensionality of the data and/or they
fail to represent structure between and within clusters simultaneously. In this paper we
extend (dissimilarity) matrix shading with several reordering steps based on seriation tech-
niques. Both ideas, matrix shading and reordering, have been well-known for a long time.
However, only recent algorithmic improvements allow us to solve or approximately solve
the seriation problem efficiently for larger problems. Furthermore, seriation techniques are
used in a novel stepwise process (within each cluster and between clusters) which leads to a
visualization technique that is able to present the structure between clusters and the micro-
structure within clusters in one concise plot. This not only allows us to judge cluster quality
but also makes mis-specification of the number of clusters apparent. We give a detailed
discussion of the construction of dissimilarity plots and demonstrate their usefulness with
several examples. Experiments show that dissimilarity plots scale very well with increasing
data dimensionality.

Supplemental materials with additional experiments for this paper are available online.
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1 Introduction

Assessing the quality of an obtained cluster solution has been a research topic since the invention

of cluster analysis. This is especially important since all popular clustering algorithms produce

a clustering even for data without a “cluster” structure. The quality of clustering or individual

clusters is typically judged by intra and inter-cluster similarities. High intra-cluster similarity

(between objects in the same cluster) and at the same time low inter-cluster similarity (between

different clusters) indicate a good clustering. To present these similarities visualizations are helpful

for judging the quality of a clustering and to explore the cluster structure.

For hierarchical clustering, dendrograms (Hartigan, 1967) are available which show the hier-

archical structure of the clustering as a binary tree. Similarities between clusters and between

objects are represented in the plot by the height of internal nodes of the tree. Cluster quality can

be judged by looking at the distance between the internal nodes that separate clusters and the

nodes that separate the objects in each cluster. Unfortunately such a convenient visualization is

only possible for hierarchical/nested clusterings.

For an arbitrary partition of data into k clusters, the original objects can be projected into

2-dimensional space using dimensionality reduction methods (e.g., principal component analysis or

multi-dimensional scaling). Objects belonging to the same cluster can be marked and separation

between clusters can be judged visually (Pison et al., 1999). This type of visualization works well

only if the dimensionality reduction method preserves a large portion of the dimensions which

separate the clusters. The usefulness of the display deteriorates if the separating dimension has

a relatively small variability compared to the other dimensions which becomes more likely as the

dimensionality of the data increases.

Another approach is to visualize metrics calculated from inter and intra-cluster similarities.

For example, silhouette width (Rousseeuw, 1987; Kaufman and Rousseeuw, 1990) is a measure

for how much an object belongs to its cluster (intra cluster similarity) compared to how close it

is to objects in its nearest neighboring clusters. Silhouette widths are typically visualized using

a barplot where the objects are ordered by cluster and decreasing silhouette width. However,

this type of visualization only provides a diagnostic tool for cluster quality and does not allow

analysis of the structure of the data. These and several other visualization methods (e.g., based

on self-organizing maps and neighborhood graphs) are reviewed in Leisch (2008).

2



The visualization technique presented in this paper is based on a different technique called

matrix shading (see, e.g., Sneath and Sokal, 1973; Ling, 1973; Gale et al., 1984; Huband et al.,

2005). For matrix shading, each value in the matrix is represented by a square with the intensity

of the color depending on the value. The presentation is improved by reordering the rows and

columns. Reordering matrices is a long known technique. For example, Jacques Bertin devotes

a whole chapter of his book “Graphics and Graphic Information Processing” (Bertin, 1981, which

was first published in French in 1967) to this topic. More recently matrix reordering was applied

to mosaic displays for multi-way contingency tables (Friendly, 1994), distance matrices (Wishart,

1999), correlation matrices (Friendly, 2002), and scatter plot matrices (Hurley, 2004). For these

applications reordering is typically done using heuristics. For example matrix shading is often used

in connection with hierarchical clustering, where the order of the dendrogram leaf nodes is used to

arrange the matrix yielding a cluster heat map (Eisen et al., 1998; Wilkinson and Friendly, 2009).

Since the order of leaf nodes in a dendrogram is not unique (each subtree can be rotated) and to

further improve the presentation, the leaf nodes can be reordered using heuristics (e.g., Gruvaeus

and Wainer, 1972). Only more recently Bar-Joseph et al. (2001) developed an O(n4) algorithm

that finds the optimal order of leaf nodes which minimizes the sum of distances between the nodes

in the order.

The idea to apply matrix shading not only with hierarchical clustering but also in the context

of partitional clustering is obvious and is used in a method called CLUSION suggested by Strehl

and Ghosh (2003) for a graph-based partitional clustering. In this method the dissimilarity matrix

is arranged such that all objects pertaining to a single cluster appear in consecutive order in the

matrix. The authors call this coarse seriation. The result of a “good” clustering should be a

matrix with low dissimilarity values forming blocks around the main diagonal corresponding to

the clusters. However, using coarse seriation, the order of the clusters is only an artifact of the

cluster algorithm and the objects within each cluster are unordered potentially obscuring structure

in the data.

Seriation is the combinatorial problem of arranging a set of objects in a linear order given

available data and some loss function. The dissimilarity plot method which we first briefly intro-

duced in Hahsler et al. (2008) and describe in this paper in detail applies state-of-the-art seriation

methods to find, given a partitional clustering, the optimal or near optimal positions of clusters
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and objects within clusters in a shaded dissimilarity matrix. It aims at visualizing global structure

(similarity between different clusters is reflected by their position relative to each other) as well

as the micro structure within each cluster (position of objects) to be able to judge cluster quality

and give an indication whether the number of clusters was mis-specified. Seriation is a combi-

natorial problem and thus in general very difficult to solve for all but extremely small problems.

Recently a very efficient algorithm for the seriation problem based on branch-and-bound (Brusco

and Stahl, 2005) and a heuristic that combines dynamic programming combined with simulated

annealing (Brusco et al., 2008) have been developed. This algorithmic progress and the fact that

we only need to apply seriation to subsets of the data allow us to use seriation techniques for the

visualization of partitional clusterings of larger data sets.

The rest of the paper is organized as follows. In Section 2 we introduce the seriation problem

and its application for optimally positioning clusters and objects in the plot. The method used to

produce dissimilarity plots is described in Section 3. Sections 4 and 5 present several examples and

experiments to show how dissimilarity plots compare to other methods. We conclude the paper

with Section 6.

2 Seriation

Seriation is a basic problem in combinatorial data analysis (Arabie and Hubert, 1996) with the

aim to arrange all objects in a set in a linear order given available data and some loss function, in

order to reveal structural information. Solving problems in combinatorial data analysis requires

the solution of discrete optimization problems which, in the most general case, involves evaluating

all feasible solutions. Due to the combinatorial nature, the number of possible solutions grows with

problem size (number of objects, n) at the order O(n!). This makes a brute-force enumerative

approach infeasible for all but very small problems. To solve larger problems (currently with up to

40 objects), partial enumeration methods can be used. For example, Hubert et al. (1987) propose

dynamic programming and Brusco and Stahl (2005) use a branch-and-bound strategy. For larger

problems heuristics can be employed. Recently a heuristic which combines dynamic programming

with simulated annealing was developed by Brusco et al. (2008). This heuristic typically produces

very good average results and is able to find close to optimal solutions for much larger problems.

To seriate a set of n objects O = {O1, . . . , On} one typically starts with an n × n symmetric
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dissimilarity matrix D = (dij) where dij for 1 ≤ i, j ≤ n represents the dissimilarity between

objects Oi and Oj, and dii = 0 for all i. We define a permutation function Ψ as a function which

reorders the objects in D by simultaneously permuting rows and columns, i.e., Ψ(D) = ADA,

where A is a permutation matrix with exactly one 1 per row and column and otherwise only 0s.

The permutation matrix A can be obtained by permuting the rows of an n × n identity matrix

according to the order the objects in O should have in the permutation.

The seriation problem is to find a permutation function Ψ∗ which optimizes the value of a

given loss function L. This results in the optimization problem

Ψ∗ = argmin
Ψ

L(Ψ(D)). (1)

Next, we introduce a small selection of loss functions which can be used for ordering objects

and clusters in dissimilarity plot. A more comprehensive list of loss functions used for the seriation

problem can be found in Hahsler et al. (2008).

2.1 Column/row gradient measures

A symmetric dissimilarity matrix where the values in all rows and columns do not decrease when

moving away from the main diagonal is called a perfect anti-Robinson matrix after the statistician

Robinson (1951). Formally, an n× n dissimilarity matrix D is in anti-Robinson form if and only

if the following two gradient conditions hold (Hubert et al., 1987):

within rows: dik ≤ dij for 1 ≤ i < k < j ≤ n; (2)

within columns: dkj ≤ dij for 1 ≤ i < k < j ≤ n. (3)

In an anti-Robinson matrix the smallest dissimilarity values appear close to the main diagonal,

therefore, the closer objects are together in the order of the matrix, the higher their similarity.

This provides a natural objective for the seriation problem.

It has to be noted that D can be brought into a perfect anti-Robinson form by row and

column permutation whenever D is an ultrametric or D has an exact Euclidean representation in

a single dimension (Hubert et al., 1987). However, for most data only an approximation to the

anti-Robinson form is possible.
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A suitable loss measure which quantifies the divergence of a matrix from the anti-Robinson

form was given by Hubert et al. (1987) as

L(D) =
∑
i<k<j

f(dik, dij) +
∑
i<k<j

f(dkj, dij) (4)

where f(·, ·) is a function which defines how a violation or satisfaction of a gradient condition for

an object triple (Oi, Ok and Oj) is counted. Hubert et al. (1987) suggest two functions. The first

function is given by:

f(y, z) = sign(y − z) =


−1 if z > y;

0 if z = y;

+1 if z < y.

(5)

It results in the raw number of triples violating the gradient constraints minus triples which

satisfy the constraints.

The second function is defined as:

f(y, z) = |y − z|sign(y − z) = y − z (6)

It weighs each satisfaction or violation by its magnitude given by the absolute difference between

the values.

2.2 Anti-Robinson events

An even simpler loss function can be created in the same way as the gradient measures above by

concentrating on violations only.

L(D) =
∑
i<k<j

f(dik, dij) +
∑
i<k<j

f(dkj, dij) (7)

To only count the violations we use

f(y, z) = I(y, z) =

1 if z < y and

0 otherwise.
(8)

Chen (2002) presented a formulation for an equivalent loss function and called the violations anti-

Robinson events. The maximal number of anti-Robinson events is given by (n− 2)(n− 1)n/3 and
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occurs if the matrix is in perfect Robinson form (values do not increase when moving away from

the main diagonal).

Chen (2002) also introduced a weighted versions of the loss function resulting in

f(y, z) = |y − z|I(y, z) (9)

using the absolute deviations as weights.

2.3 Hamiltonian path length

The dissimilarity matrix D can be represented as a finite weighted graph G = (Ω, E) where the

set of objects Ω constitute the vertices and each edge eij ∈ E between the objects Oi, Oj ∈ Ω has

a weight wij associated which represents the dissimilarity dij.

Such a graph can be used for solving a seriation problem (see, e.g., Hubert, 1974; Caraux and

Pinloche, 2005). An order Ψ of the objects can be seen as a path through the graph where each

node is visited exactly once, i.e., a Hamiltonian path. Minimizing the Hamiltonian path length

results in an order optimal with respect to minimizing the dissimilarities between neighboring

objects. The loss function based on the Hamiltonian path length is:

L(D) =
n−1∑
i=1

di,i+1. (10)

The length of the shortest Hamiltonian path is equal to the value of the minimal span loss

function (as used by Chen, 2002), and finding the associated order is equivalent to solving the

traveling salesperson problem (TSP) (Gutin and Punnen, 2002). For the TSP exist specialized

solvers (e.g., Concorde by Applegate et al. (2006)) and good heuristics (e.g., Lin and Kernighan,

1973) which are more efficient than algorithms which try to approximate the anti-Robinson forms.

3 Dissimilarity plots

The aim of visualizing a clustering solution is to help to make the structure or lack thereof implied

by the cluster solution apparent. To achieve this goal we use matrix shading to display the

dissimilarity matrix with the following improvements:
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Figure 1: Example of the application of reordering for dissimilarity plot with four clusters.

1. We arrange the clusters in such a way that clusters which contain objects that are more

similar are displayed closer together. This helps to understand the relationship between

clusters. For example, if the clustering algorithm breaks apart a natural group in the data,

the two clusters formed should be displayed next to each other.

2. We arrange the objects in each cluster such that more similar objects are displayed closer

together. This way the micro-structure inside each cluster can be analyzed. For example a

cluster can contain two or more quite distinct groups which might indicate that the number

of clusters used for clustering was too small.

3. We use a color scheme that is equivalent to a monotone, possibly non-linear transforma-

tion of the (dis)similarity data to highlight different aspects of the clustering (e.g., cluster

compactness or inter cluster similarities).

Figure 1 shows the steps needed for visualizing data using dissimilarity plots. As input we have

a dissimilarity matrix D and the assignment function Γ : O → {1, . . . , k} provided by a partitional

clustering algorithm, which assigns a cluster identification number to each object. This function

is used to split the set of objects O into k subsets:

Oi = {o ∈ O | Γ(o) = i} for i = 1 . . . k. (11)

We create for each subset Oi representing cluster i a sub-matrix Di containing only the dis-

similarities between the objects in Oi.
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To reveal structural information within each cluster, we use a seriation method on the set

of objects for each cluster using the corresponding dissimilarity sub-matrix Di resulting in k

permutation functions Ψi which are used to permute the columns and rows of Di representing

objects in each cluster. Note that we never have to apply the typically expensive seriation method

to the whole dissimilarity matrix.

Next, we determine the order of clusters for display. To position the clusters in the dissimilarity

plot a seriation method is applied to an inter-cluster dissimilarity matrix Dc to find a cluster

permutation function Ψc which determines the order of clusters in the plot. To construct Dc

we have to compute aggregate dissimilarities between all pairs of clusters given dissimilarities

between all elements of the clusters in D. For hierarchical clustering dissimilarities between two

clusters represented by two sets of objects X and Y are typically calculated by one of the following

methods.

complete-link: dc(X ,Y) = max{d(x, y) : x ∈ X , y ∈ Y} (12)

single-link: ds(X ,Y) = min{d(x, y) : x ∈ X , y ∈ Y} (13)

average-link: da(X ,Y) =
1

|X | · |Y|
∑
x∈X

∑
y∈Y

d(x, y) (14)

Complete-link (single-link) respectively use the largest (smallest) possible dissimilarity between

any two objects, one of each set. Average-link computes the average of all pairwise dissimilarities

between objects of the two sets. In set theory the Hausdorff metric (Hausdorff, 2001) is used

to calculate the dissimilarity between two sets defined from pairwise dissimilarities between the

elements in the two set. This metric is defined as

dH(X ,Y) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y)} (15)

The Hausdorff metric pairs up each element from one set with the most similar element from the

other set and then finds the largest dissimilarity in such element pairs.

The last step in Figure 1 deals with the color palette employed. Although this is an important

step, color palettes are rarely discussed for matrix shading. Using a perceptually-based color space

like the CIELUV or the HCL color space (see Zeileis et al., 2009), values in the matrix can be

rendered to be perceived to go linearly from a very dark gray (or black) for very low dissimilarity
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to a very light gray (or white) for high dissimilarity. This somewhat non-intuitive convention to

use black for low values and white for high values can be interpreted as visualizing similarities

instead of dissimilarities. Dissimilarities can always be transformed to similarities. However, this

transformation is typically non-linear since it maps dissimilarity values with possibly unbounded

domain [0,∞) to similarity values in [0, 1]. This creates the problem that if dissimilarities are

shown in a linear gray scale then similarities are not displayed linearly and vice versa.

A solution is to abandon the idea of a linear scale and focus on the intended purpose of the

visualization, e.g., on the compactness of clusters, on the micro structure within clusters, or on

the interaction between clusters. This can be done by using monotone and possibly non-linear

transformations of the dissimilarity values to the gray values used for visualization. Here we

assume that we have an output device which can display points in a gray scale going from 0 (white

or a light gray) to 1 (black or a dark gray) which is perceived to be linear by the user (Zeileis

et al., 2009). We define the transformation function as

f : [0, dmax]→ [0, 1], (16)

where dmax is some maximal dissimilarity value, such that for all d ∈ D we have d ≤ dmax.

Some examples for useful transformations are presented in Table 1 and depicted in Figure 2.

Next to the linear transformation (a) simple non-linear transformations ((b) and (c)) can be used.

(b) focuses the attention on compact clusters and reduces high dissimilarity“noise”while (c) makes

even areas of higher dissimilarity visible. Note that the linear transformation (a) is just a special

case of the non-linear transformation with p = 1. (d) and (e) show two possible transformations

that highlight areas of lower dissimilarity. (d) simply cuts the palette off after the threshold while

(e) uses a smooth cutoff based on the Logistic cumulative distribution function.

Since we deal with symmetric dissimilarity matrices, the display is mirrored around the di-

agonal which is redundant. We can use the lower triangle of the plot to display the aggregated

dissimilarities within and between clusters already calculated for the inter-cluster dissimilarity

matrix Dc.

The usefulness of a display like a dissimilarity plot has to be judged by its ability to present

the cluster structure in a clear form to the user. In the following sections we will present several

examples and experiments to show the usefulness of dissimilarity plots.
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Figure 2: Transformation functions from Table 1 with dmax = 10: (a) linear palette, (b) sub-linear

with p = 3, (c) super-linear with p = 1/3, (d) linear with threshold at t = 4, and (e) non-linear

(based on a logistic cumulative distribution function) with t = 4 and s = 1.
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Figure 2 Description Transformation functions

(a) Linear palette f(d) = 1− d/dmax

(b), (c) Non-linear palette using the power p f(d) = (1− d/dmax)p

(d) Linear palette with threshold t f(d) =

1− d/dmax if d ≤ t,

0 otherwise.

(e) Non-linear palette (based on the Logistic cumula-

tive distribution function) with a smooth cutoff at

the location parameter t and with scale parame-

ter s

f(d) = 1− 1
(1+exp((d−t)/s))

Table 1: Examples of transformation functions.

4 Examples

In this section we present several examples to show the potential of dissimilarity plots. For the

examples we use the column/row gradient measure as the loss function for the seriation method

and aggregate dissimilarities between clusters using average pairwise dissimilarity. The reordering

of clusters is done using branch-and-bound to find the optimal solution (Brusco and Stahl, 2005).

For the reordering for all objects in each cluster we use a simulated annealing heuristic (Brusco

et al., 2008). The implementation of both algorithms is provided by Michael Brusco and is available

in the R extension package seriation (Hahsler et al., 2010).

4.1 Easily distinguishable groups

First we look at the Ruspini data set (Ruspini, 1970) which is popular for illustrating clustering

techniques. It consists of 75 points in two-dimensional space with four clearly distinguishable

groups.

We calculated a dissimilarity matrix using the euclidean distance and we used a k-medoids

clustering algorithm (partitioning around medoids (PAM); Kaufman and Rousseeuw, 1990) to

produce a partition with k = 4 clusters. We present several visualizations of the clustering in

Figure 3. Figure 3(a) plots the data as a scatter plot with clusters annotated. The four clusters

are clearly separated and it is visible that clusters 2 and 4 are the closest clusters. Figure 3(b)
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shows the silhouette widths for all objects. The clean clustering is represented here by the fact

that all objects have large silhouette widths indicating that they fit well in the cluster they are

assigned to and that they are far from the objects in the next closest cluster. Figure 3(c) shows the

dissimilarity matrix reordered using coarse seriation (Strehl and Ghosh, 2003) where all objects

pertaining to a single cluster appear in consecutive order. Dissimilarity values are represented

by gray values given in the color key below the plot. The clearly visible dark squares on the

diagonal and the lighter off-diagonal blocks indicate that the clusters are well defined. However,

the structure between the clusters and within clusters is not preserved in the plot. Figure 3(d)

shows the dissimilarity plot. In addition to the clustering information already visible using coarse

seriation, the position of the clusters and the average cluster dissimilarity plotted in the lower

left triangle in the dissimilarity plot indicate that clusters 3 and 1 and clusters 2 and 4 are

closer together while 3 and 4 (the endpoints of the plot) are the most dissimilar. For the intra

cluster structure it is interesting that the darker triangle above the main diagonal for cluster 2

is not perfect. Close examination of cluster 2 in Figure 3(d) reveals that the first 5 objects in

that cluster are somewhat separated from the remainder of the cluster. This can be verified in

Figure 3(a).

The maximum number of anti-Robinson events for the 75 points in the data set is 135050. The

unordered dissimilarity matrix contains 66151 events (48.98% of the maximum). Coarse seriation

produces 57452 events (42.54%) and dissimilarity plot reduces the number to 27529 events (20.38%)

indicating a much clearer presentation.

For this example all techniques provided good results which was to be expected given the “easy

to cluster” data set. Next we will see how dissimilarity plots help to identify a mis-specification of

the number of clusters.

4.2 Mis-specification of the number of clusters

We again use the Ruspini data set with four groups but this time we mis-specify the number of

clusters and use first k = 3 and then k = 7. Again, we use PAM to create the clusterings.

Figure 4 compares matrix shading using coarse seriation (left column) and dissimilarity plots

(right column) for using three (first row) and seven (second row) clusters. In Figures 4(a) we see

that clusters 2 and 3 are clearly visible as two dark squares and cluster 1 is on average less compact

13



●

●

● ●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

0 20 40 60 80 100 120

0
50

10
0

15
0

x

y

1
2

3

4

(a)

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.74

n = 75 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   20  |  0.73

2 :   17  |  0.67

3 :   15  |  0.80

4 :   23  |  0.75

(b)

(c) (d)

Figure 3: Plots for the Ruspini data set with 4 clearly separated clusters. (a) Scatterplot of the

data, (b) silhouette plot, (c) matrix shading reordered using coarse seriation, and (d) dissimilarity

plot. (c) and (d) use a non-linear palette (cubic; p = 3) to highlight low dissimilarities.
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(a) (b)

(c) (d)

k Maximum Unordered Coarse seriation Dissimilarity plot

3 135050 66151 (48.98%) 37156 (27.51%) 35340 (26.17%)

7 135050 66151 (48.98%) 59302 (43.91%) 22780 (16.87%)

(e)

Figure 4: Dissimilarity plots for the Ruspini data set with mis-specified number of clusters. Three

instead of four clusters with (a) coarse seriation and (b) dissimilarity plot. Seven clusters with

(c) coarse seriation and (d) dissimilarity plot. All plots use a non-linear palette (cubic; p = 3).

(e) shows the number (percentage) of anti-Robinson events in the plots.
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(lighter triangle below the diagonal). Looking at the relationship between the individual objects

in cluster 1 (triangle above the diagonal) shows a more pronounced checkerboard structure than

the other clusters. The dissimilarity plot in Figures 4(b) however is able to clearly identify two

distinct groups (the two dark triangles above the diagonal). This indicates that the true number

of groups must be larger than the number of clusters used for clustering. The dissimilarity plot

even suggests the correct number of four clusters.

The plots in Figures 4(c) and (d) show the result for too large a number of clusters. Here

the clustering algorithm breaks some natural groups into several clusters to force a partition into

seven clusters. Matrix shading with coarse seriation in Figures 4(c) shows that there are several

compact clusters, however since the order of clusters in the plot is just an artifact of the clustering

algorithm it does not show that there are several clusters which actually should form together a

larger compact cluster. The dissimilarity plot in Figure 4(d) automatically rearranges the clusters

to show that some clusters belong together to form a natural group making the mis-specification

of the numbers of clusters apparent.

The improvement in display can also be seen in the table in Figure 4(e). Especially for k = 7

the number of anti-Robinson events left in the dissimilarity plot is reduced dramatically compared

to coarse seriation.

4.3 Data without structure

Next we look at data which do not contain any structure. Clustering algorithms will still find

the specified number of clusters and it is important to identify the clustering result as an artifact

rather than a “true” grouping found in the data.

We generate random data for 250 objects in five-dimensional space. The data point of each

object is chosen randomly from a standard normal distribution. Distances between objects are

calculated using euclidean distance and clustering is performed for k = 10 with PAM.

The results are presented in Figure 5. The projection of the data onto its first two principal

components in Figure 5(a) shows that all clusters overlap in the plot and no structure is visible.

This may indicate a “bad” clustering. However, the first two principal components only show

part of the variability of the data and separation between the clusters not visible in the plot

might exist. Figure 5(b) shows rather narrow silhouettes, some even with negative values which
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(a)

Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.13

n = 250 10  clusters  Cj

j :  nj | avei∈Cj  si

1 :   27  |  0.08

2 :   25  |  0.11

3 :   28  |  0.29

4 :   40  |  0.12

5 :   21  |  0.01

6 :   26  |  0.07

7 :   22  |  0.15

8 :   20  |  0.11

9 :   19  |  0.25

10 :   22  |  0.06

(b)

(c) (d)

Figure 5: Plots for random data. (a) Projection of the data onto its fist two principal components,

(b) silhouette plot, (c) matrix shading with coarse seriation, and (d) dissimilarity plot. Plots (c)

and (d) use a non-linear palette (cubic; p = 3) to highlight strong clusters.
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indicates that several objects in these clusters are closer to objects in other clusters than to their

own medoid. Narrow silhouettes typically suggest a “weak” clustering. Both, matrix shading with

coarse seriation (in Figure 5(c)) and the dissimilarity plot (in Figure 5(d)) look almost identical

and show very little variation in gray value over the whole matrix. Even though we use a non-linear

palette (with p = 3) which highlights clusters, the squares on the diagonal fade together with the

rest of the plot towards a lighter gray, a clear sign that the clustering produced no useful results.

The maximum number of anti-Robinson events for the 250 objects is 5146000. The unordered

dissimilarity matrix contains 2586810 events (50.27% of the maximal number). Coarse seriation

reduces the number to 2395981 events (46.56%) and dissimilarity plot reduces it further to 1934304

events (37.59%). Since the data has no clustering structure, the improvement is not as large as

in the prior examples. However, this actually is a desirable effect indicating again that the found

clusters do not represent a useful clustering.

4.4 High-dimensional data

To show how dissimilarity plots work with higher-dimensional data, we use the Votes data set

available via the UCI Repository of Machine Learning Databases (Asuncion and Newman, 2007).

This data set includes votes (voted for, voted against, not voted) for each of the 435 congressmen

of the U.S. House of Representatives on the 16 key votes during the second session of 1984.

To preserve the information that some congressmen, possibly on purpose, did not vote on some

topics, we encoded the data using 32 binary variables, two for each key vote. A 1 for the first

variable codes for a vote in favor, a 1 for the second variable codes for a vote against, and a 0

for both indicates that the congressman did not vote on the topic. Then we used the Jaccard

index (Sneath and Sokal, 1973) to calculate a dissimilarity matrix between congressmen. This is

the number of votes two congressman agreed on divided by the total number of votes any of the

two voted on.

For clustering again we used PAM. To decide on the number of clusters we plotted the average

silhouette values for k = 2, 3, . . . , 30. The first bump in the plot occurred at k = 12 which we

selected as the number of clusters.

The results of the clustering are shown in Figure 6. Due to the high dimensionality, the

projection of the objects onto its first two principal components in Figure 6(a) only explains 40.45%
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(a)

Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.14

n = 435 12  clusters  Cj

j :  nj | avei∈Cj  si
1 :   35  |  0.34

2 :   48  |  0.15

3 :   45  |  −0.01

4 :   36  |  0.08

5 :   38  |  0.05

6 :   32  |  0.08

7 :   43  |  0.22

8 :   37  |  0.27

9 :   18  |  0.09

10 :   52  |  0.07

11 :   20  |  0.33
12 :   31  |  0.05

(b)

(c) (d)

Figure 6: Plots for the Votes data set. (a) Projection of the data on its fist two principal compo-

nents, (b) silhouette plot, (c) matrix shading with coarse seriation, and (d) dissimilarity plot. For

(c) and (d) we use a linear palette with a shading threshold (t = .7) to focus on low dissimilarity

areas.
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Figure 7: Visualization of cluster composition as a spine plot with reordered clusters.

of the variability and does not reveal too much apart from the observation that all the clusters

seem to be arranged in a circle. The silhouette plot in Figure 6(b) shows a rather small average

silhouette width of 0.14. From the individual silhouettes, it seems that cluster 3 is especially bad

since most of its points are closer to points in other clusters than to its own medoid resulting in

an on average negative silhouette width for the cluster. Figure 6(c) shows the result of matrix

shading with coarse seriation. There are several dark blocks visible, but it is not immediately clear

how they are related to each other or if there is some larger structure in the data. Figure 6(d)

shows the dissimilarity plot which presents two clearly defined groups, a larger group including

clusters 7, 5, 8, 4, 6 and 12 and the smaller group including clusters 10, 11, 2, 1. Two clusters

(3 and 9) are related to both groups but have more similarity to the smaller group. Note that

in order to make the plots clearer, we used a linear palette with threshold where we removed all

dissimilarity values greater than 0.7.

The number of anti-Robinson events is reduced from 47.44% from a random order to 39.64%

for coarse seriation. The dissimilarity plot further reduces the number to 21.93% indicating a large

improvement.

Since the Votes data set also contains class labels (party affiliation of congressmen), we can

create a cross-table for clusters and classes. The result is presented as a spine plot in Figure 7.

For easier comparison, we arranged the clusters (bars) in the plot in the same order as in the

dissimilarity plot. This shows that the larger block in the dissimilarity plot contains almost

exclusively Democrats while the smaller cluster is dominated by Republicans. Clusters 3 and 9

consists of mostly Democrats and Republicans, respectively, who seem to share many views with

Republicans but also vote on some topics with Democrats.
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After analyzing the dissimilarity plot, the projection of the clusters in Figure 6(a) makes more

sense. The clusters run in a half-circle from cluster 2 to cluster 5 (using Figure 7 reveals that

is from Republicans to Democrats) and cluster 3 lies across all other clusters. However, this

interpretation can only be reached after studying the actual class labels.

5 Experiments

In this section we study how dissimilarity plots are influenced by the number of clusters as well as

the dimensionality of the data. To quantify the contribution of the reordering techniques applied

for dissimilarity plots, we use the percentage of anti-Robinson events (relative to maximal possible

events) left in the plot. The rationale is that a better organization of objects leads to a clearer

and more useful presentation of the clustering.

For this small scale experiment we use different simulated data sets of size n = 250 objects and

we vary the number of clusters k between 2 and 10 and the number of dimensions d both between

2 and 100. The cluster centers are chosen randomly in a [0, 1]d hypercube and the data points

follow a multivariate normal distribution around the center with the covariance matrix Σ = 0.01Id

where Id is the d×d identity matrix. Since we do not evaluate the clustering algorithm, we assume

for the experiments that we know the assignment of objects to clusters. We simulate ten data sets

with each combination of k and d.

The results are presented in Figure 8. The box plots indicate that while coarse seriation is

heavily influenced by k, dissimilarity plots are are only minimally influenced by k or d. These

preliminary experiments suggests that dissimilarity plots represent a useful tool for a wide variety

of data sets.

6 Conclusion

This paper demonstrates that the two well-known ideas of matrix shading and seriation can be

combined into dissimilarity plots, a new and powerful visualization technique that provides many

advantages over existing techniques for visualizing partitional clustering. Most notably the new

method scales well with the dimensionality of the data and by reordering clusters and objects

within clusters can provide a very concise structural representation of the clustering. It was also
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Figure 8: Comparison of the number of anti-Robinson events (in %) left in display for unordered

data, coarse seriation and dissimilarity plot for different combinations of k and d.
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shown that dissimilarity plots are helpful in spotting the mis-specification of the number of clusters

used for partitioning.

An issue with large data sets is display resolution. The resolution of the display used (current

mass market displays offer a resolution of up to 1920 × 1200 pixels) restricts the size of the

dissimilarity matrix that can be displayed. For larger data sets several methods are possible:

1. Sampling of objects. This reduces the size of the dissimilarity matrix and therefore also

speeds up the construction of the dissimilarity plot. However, details are sacrificed.

2. Image downsampling. After the full size reordered dissimilarity matrix is created the size of

the image is reduced to fit the display (e.g., by using pixel skipping, pixel averaging or 2D

discrete wavelet transformation).

3. Interactive plot. To retain all information in the plot, in the first stage only a plot with

dissimilarities between clusters is displayed. Then the user can zoom into individual clusters

using the whole available display for only a single cluster.

The first two options are already available for the implementation of dissimilarity plots pro-

vided as supplemental material for this paper. Sampling is a built-in function in R and image

downsampling in done by R’s graphics device. The third option currently needs to be performed

manually and a more convenient solution is part of future development.

7 Supplemental Materials

R-package seriation: R-package“seriation”contains the function dissplot() which implements

dissimilarity plots. (seriation 1.0-2.gz.tar, GNU zipped tar file)

R-code: Complete R-code to reproduce the results in this paper and some additional experiments.

(dissplot.R)
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