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Abstract

Seriation aims at finding a linear order for a set of objects to reveal structural information
which can be used for deriving data-driven decisions. It presents a difficult combinatorial
optimization problem with its roots and applications in many fields including operations
research. This paper focuses on a popular seriation problem which tries to find an order
for a single set of objects that optimizes a given seriation criterion defined on one-mode
two-way data, i.e., an object-by-object dissimilarity matrix. Over the years, members of
different research communities have introduced many criteria and seriation methods for
this problem. It is often not clear how different seriation criteria and methods relate to
each other and which criterion or seriation method to use for a given application. These
methods are represent tools for analytics and therefore are of theoretical and practical
interest to the operations research community. The purpose of this paper is to provide
a consistent overview of the most popular criteria and seriation methods and to present
a comprehensive experimental study to compare their performance using artificial and a
representative set of real-world datasets.

Keywords: Combinatorial optimization, heuristics, experimental study.
2010 MSC: 00-01, 99-00

1. Introduction

The field of analytics garners growing attention in the operations research commu-
nity (Mortenson et al., 2015). A tool for analytics with roots in operations research is
seriation, often also referred to as sequencing or ordination. Seriation arranges a set of ob-
jects into a linear order given available data with the goal to reveal structural information5

which can be used to support decision making. A typical assumption is that structural in-
formation can be revealed when similar objects are placed closer to each other than more
dissimilar objects (Arabie & Hubert, 1996). To illustrate this idea, we apply seriation
to the supreme court judges from the second Rehnquist U.S. Supreme Court (Sirovich,
2003) using their voting behavior. We would expect that the data contains a linear order10

from most conservative to most liberal judge. We measure pairwise dissimilarity by the
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(a) Judges in alphabetical order (b) Judges reordered by seriation

Figure 1: Dissimilarity matrix for Supreme Court judges in (a) original order and (b) after reordering
using seriation.

joint probability of disagreement between the judges. The data is visualized in Figure 1
as a dissimilarity matrix with square color representing dissimilarity from low (dark) to
high (light). Figure 1(a) shows the original data with the judges ordered alphabetically
by last name, while Figure 1(b) has the judges rearranged using seriation. It is obvious15

that seriation succeeds in placing lower dissimilarity values (darker squares) closer to the
diagonal ordering judges automatically from most conservative (Scalia) to most liberal
(Stevens). The seriation also reveals more structural information by showing two darker
blocks which represent two distinct groups, conservative and liberal judges, respectively.
Instead of judges, objects can for example be machines, products or customers.20

Seriation has a rich history starting at the turn of the 20th century with Petrie in-
troducing the first formal method to find the chronological order for graves discovered
in the Nile area given found objects (Petrie, 1899). The seriation problem was intro-
duced to the operations research community as a combinatorial optimization task more
than 40 years ago by McCormick and his colleagues when they studied different matrix25

reordering techniques. The group introduced the bond energy algorithm (BEA) (Mc-
Cormick et al., 1972), a very influential method to identify natural groups in complex
data matrices by simultaneously reordering columns and rows of a matrix such that an
objective function called measure of effectiveness is maximized. This results in a ma-
trix with groups of entries that are numerically as closely related to its four neighbors30

as possible. McCormick et al. (1972) present several applications ranging from finding
relationships between marketing techniques and applications to factoring the problem of
airport design into a number of smaller, more manageable subproblems. Lenstra (1974)
showed that the optimization problem can be restated as two traveling-salesman prob-
lems, one for the rows and one for the columns. BEA and similar ideas are popular35

in the operations research literature for applications in manufacturing and especially
for the important problem of optimal machine-part cell formation (see, e.g., Rogers &
Kulkarni, 2005; Yang & Yang, 2008; Wu et al., 2010; Paydar & Saidi-Mehrabad, 2013;
Boutsinas, 2013; Thanh et al., 2016). Seriation and the early work done by members of
the operations research community is now also applied in such diverse fields as biology40
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(arrange gene expression data and read assembly), ecology (analyze plant associations),
psychology (order subject-by-item response matrix), sociology (find group structure in
sociograms), and visualization (reorder data tables, heatmaps and assess cluster ten-
dency). Given the interdisciplinary nature of seriation and its applications, methods are
developed and published by members of different research communities. A comprehen-45

sive recent historical overview of the development of seriation techniques and applications
can be found in a review article by Liiv (2010).

This paper is based on our previous work (Hahsler et al., 2008) which discussed a
smaller set of seriation criteria and methods mainly used for data visualization, and
introduced the design of the open source R extension package seriation (Hahsler et al.,50

2016). Here we focus on a specific type of seriation problem, the problem of reordering
dissimilarity matrices to reveal structural information. In the context of multidimensional
scaling, this type of data is known as one-mode two-way data (Carroll & Arabie, 1980),
indicating that the data only represents the relationship between a single set of objects
using a two-dimensional object-by-object data array. Like in the case of BEA, seriation55

can also be performed directly on data matrices without first calculating dissimilarities
as well as on two or higher-mode data where rows, columns and additional dimensions
represent separate sets of objects which can be reordered simultaneously. Methods for
two or higher-mode data are outside the scope of this paper and the interested reader is
referred to the papers by Liiv (2010) and Hahsler et al. (2008).60

The seriation methods considered in this paper are related to an iterative method
called moment ordering algorithm developed by Deutsch & Martin (1971), two of Mc-
Cormick’s colleagues, to identify a single dominant relationship in a data matrix that
can be revealed by reordering the matrix. The authors also introduce a measure of effec-
tiveness for the moment ordering algorithm, however it is not directly maximized by the65

algorithm. Similarly, the methods discussed in this paper try to find a good linear order,
however, many directly optimize an objective function called a seriation criterion. Such
optimization-based methods accept violations or deviations from a perfect linear order
model in the data. This type of seriation is sometimes called statistical or probabilistic
seriation to distinguish it from deterministic seriation often used in archaeological dating70

applications which
It is often not immediately clear how seriation criteria and methods proposed by

authors from different research communities are related to each other and how different
methods perform in terms of solution quality and runtime. The purpose of this paper
is to (1) provide the operations research community with a review of the currently most75

popular seriation criteria and methods for one-mode two-way data using a consistent
formulation as an combinatorial optimization problem, (2) organize seriation criteria
and methods into groups, and (3) perform a rigorous experimental comparison study to
highlight differences and provide some grounds for choosing the appropriate method for
a given application. To enable operations research professionals to conduct experiments80

with their own data, we have implemented all methods discussed in this paper in the
latest version of the R extension package seriation (Hahsler et al., 2016).

This paper is organized as follows. Section 2 formally introduces the seriation prob-
lem. Popular seriation criteria and seriation methods are reviewed in Sections 3 and 4,
respectively. In Section 5 we present a comprehensive experimental study. We conclude85

the paper with Section 6.
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2. The seriation problem

In this paper, we restrict the discussion to seriating or ordering a single set of n objects
O = {O1, . . . , On} using as the input one-mode two-way data in the form of a n × n
symmetric dissimilarity matrix D = {dij}, where dij for 1 ≤ i, j ≤ n represents the90

pairwise dissimilarity between objects Oi and Oj , and dii = 0 for all i. Similarities can
be converted into dissimilarities using simple transformations, e.g., dij = 1

1+sij
. Pairwise

dis-(similarities) can be obtained in many ways. For example by calculating appropriate
dissimilarity metrics (e.g., Euclidean distance), calculating correlation, estimating joint
probabilities, or by obtaining pairwise similarity ratings from experts.95

We define a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} to indicate that objects
originally ordered as O1O2 · · · On will be reordered as Oπ(1)Oπ(2) · · · Oπ(n). A permu-
tation function ψπ : Rn×n → Rn×n, which reorders D according to permutation π, can
be written as ψπ(D) = {dπ(i),π(j)} = PπDPTπ , where Pπ is the permutation matrix cor-
responding to π. The permutation matrix Pπ is defined as the identity matrix In with100

rows and columns reordered according to the permutation π, i.e., Pπ = ψπ(In). We use
Ψ to denote the set of all possible permutation functions.

The quality of the arrangement of objects is assessed by a given criterion. Without loss
of generality, we use a loss function L here (a merit function M can be easily transformed
into a loss function). This leads to the following optimization problem.

minimize Z = L(ψπ(D))

subject to ψπ ∈ Ψ

Finding the optimal permutation is in general a hard discrete optimization problem
with a set of feasible solutions Ψ of size O(n!). We will discuss complexity in more detail
when we introduce seriation methods in Section 4.105

Seriation is related to unidimensional scaling with equal weights. Unidimensional
scaling (Mair & De Leeuw, 2015) is the one-dimensional special case of multidimensional
scaling with the objective to find for each object a coordinate along a line while minimiz-
ing stress given by the difference between the original pairwise dissimilarities between
objects and the distance of their coordinates along the line. Interestingly, the methods110

used for unidimensional scaling are very different from the methods applied for the gen-
eral case of multidimensional scaling (Mair & De Leeuw, 2015) leading to a combinatorial
problem similar to seriation. However, seriation is only concerned with finding the order
of objects along the line, but not the actual coordinates.

Seriation is also related to rankings without ties which impose a strict total order on115

the set of objects (Davey & Priestley, 1990). However, while the direction of the order
(i.e., first place, second place, etc.) is important for an ordered set 〈Ω;<〉, for seriation,
an order and its exact reverse are equivalent. That is, O1 < O2 < · · · < On ≡ On <
On−1 < · · · < O1. For the example with the Supreme Court judges in Figure 1 this
means that the found order from Scalia to Stevens and the exact reverse from Stevens120

to Scalia are equivalent. This is especially important when comparing different seriation
results. Orders are often compared using rank-order correlation coefficients like Kendall’s
tau (Kendall, 1938), which evaluate for each pair of objects, if they are in the same order
in both rankings. For comparing two orders, which are exactly the same, the correlation
coefficient will be +1. For unrelated orders the correlation is close to zero. However, for125
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an order and its exact reverse, the coefficient is −1. It is easy to see, that the similarity
between two seriation orders can be measured using the absolute value of the correlation
coefficient. Recently, Goulermas et al. (2016) have introduced a specialized measure to
compare seriation orders, called positional proximity measure. This measure compares
the distance of each pair of objects in the two orders and thus is not affected by a reversal130

of the order.
In the following, we will introduce some popular seriation criteria and seriation meth-

ods.

3. A review of seriation criteria

Finding a good seriation order, where similar objects are close to each other and135

dissimilar objects are more distant, is equivalent to finding a dissimilarity matrix where
small dissimilarity values are arranged close to the main diagonal and large values are
pushed far away. There are several ways to construct a criterion formalizing this idea.
We organize the most popular criteria in this paper by the way they are constructed
into groups based on gradient conditions, agreement between object rank differences and140

dissimilarities, and path length. Table 1 summarizes the definitions of the discussed
criteria calculated for the current order of dissimilarity matrix D = {dij}. The used
indicator and sign functions are defined as I(x > y) = 1 if x > y and 0 otherwise; and
sign(x) = +1 if x > 0, 0 if x = 0 and − 1 if x < 0, respectively.

3.1. Gradient conditions145

The perfectly ordered dissimilarity matrix is called an anti-Robinson matrix after the
statistician W.S. Robinson (1951). Here the dissimilarity values in all rows and columns
monotonically increase when moving away from the main diagonal, indicating that more
similar objects are always placed closer together. For most real data it is very unlikely
that a permutation function exists which will result in a perfect anti-Robinson matrix.150

Hubert et al. (2001) formalized the idea of measuring the closeness of a matrix to the
anti-Robinson form by defining gradient conditions

within rows dik ≤ dij for 1 ≤ i < k < j ≤ n and

within columns dkj ≤ dij for 1 ≤ i < k < j ≤ n.

Row and/or column gradient conditions are the basis of several seriation criteria.
Chen (2002) counts the number of violations of the gradient conditions. He called these
violations anti-Robinson events (AR events). AR events can also be weighted by the155

magnitude of the violation called anti-Robinson deviations. We can also count agreements
in addition to violations. The difference between agreements and violations is called the
gradient measure (Hubert et al., 2001). As for AR events, the gradient measure can
also be weighted by the magnitude of agreements and violations resulting in a weighted
gradient measure.160

The seriation measures discussed so far are concerned with revealing global structure
in the data by optimizing over the whole matrix. That is, for each object the distance to
all other objects is considered. For some applications, it can be useful to reveal localized
structures by only considering the neighborhood of each object. Such a criterion is
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Measure Definition
Gradient conditions
Anti-Robinson (AR) events (Chen,
2002)

∑
i<k<j f(dik, dij) + f(dkj , dij),

with f(x, y) = I(x > y)
AR deviations (Chen, 2002) with f(x, y) = |y − x| I(x > y)
Gradient measure (Hubert et al.,
2001)

with f(x, y) = −sign(y − x)

Weighted gradient measure (Hubert
et al., 2001)

with f(x, y) = −|y − x| sign(y − x)

Relative generalized Anti-Robinson
events (RGAR) (Tien et al., 2008)

1
m

∑n
i=1

(∑
(i−w)≤i<k<j I(dik < dij)

+
∑
i<k<j≤(i+w) I(dkj > dij)

)
,

with window size 1 < w < n
and m = (2/3 − n)w + nw2 − 2/3 w

3

Rank/dissimilarity agreement
Least squares criterion (Caraux &
Pinloche, 2005)

∑n
i,j=1(dij − |i− j|)2

Inertia criterion (Caraux & Pin-
loche, 2005)

−1×
∑n
i,j=1 dij(i− j)2

2-Sum criterion (Barnard et al.,
1993)

∑n
i,j=1

1
1+dij

(i− j)2

Linear seriation criterion (LS) (Hu-
bert & Schultz, 1976)

−1×
∑n
i,j=1 dij |i− j|

Banded anti-Robinson form (BAR)
(Earle & Hurley, 2015)

∑
|i−j|≤b dij(b+ 1− |i− j|)

with band width 1 ≤ b < n
Path length

Hamiltonian path length (PL) (Hu-
bert, 1974; Caraux & Pinloche,
2005)

∑n−1
i=1 di,i+1

Table 1: Popular seriation criteria.
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relative Generalized Anti-Robinson events (RGAR) (Tien et al., 2008) which only counts165

AR events in a band (a window specified by w) around the main diagonal of the reordered
dissimilarity matrix and normalizes the sum by the maximum number of possible events
in the band. RGAR can be used to create a tradeoff between only looking at local
structure (neighboring objects) with w = 2 and global structure with w = n− 1 (which
is a scaled equivalent to anti-Robinson events as defined above).170

3.2. Agreement between object rank differences and dissimilarities

A good seriation can also be described as an order where the dissimilarities between
objects agree with their rank difference in the order. That is, objects placed farther apart
also are more dissimilar. Several criteria can be created to evaluate this agreement. The
least squares criterion (Caraux & Pinloche, 2005) uses the squared difference between all175

pairwise dissimilarities and the rank differences. It is similar to the objective function
of unidimensional scaling with equal weights where the distance between coordinates is
used instead of the rank difference (Mair & De Leeuw, 2015). Inertia (Caraux & Pin-
loche, 2005) focuses on how far large dissimilarity values are pushed away from the main
diagonal. On the contrary, the 2-Sum criterion (Barnard et al., 1993) penalizes pushing180

high similarities away from the diagonal. The linear seriation criterion (LS) (Hubert &
Schultz, 1976) is related to the inertia criterion, but does not square the rank differences,
and therefore does not emphasize the impact of the distances between objects that are
placed far from each other. Earle & Hurley (2015) introduced a criterion equivalent to
LS (scaled by 1/2) and call it anti-Robinson criterion (ARc). Earle & Hurley (2015) also185

introduced a banded version of ARc which only considers the agreement between the
rank difference and the dissimilarities in a band of width 1 ≤ b < n around the main
diagonal, and thus follows the same idea of revealing localized structure as RGAR. For
b = 1, the criterion is equivalent to the Hamiltonian path length (see below) and with
b = n− 1 it is equivalent to ARc/LS.190

3.3. Path length

A dissimilarity matrix can be viewed as a finite weighted complete graph G = (V,E),
where vertices are the set of objects, i.e., V (G) = {O1, O2, . . . , On} and each edge eij ∈
E(G) is labeled with a weight given by the dissimilarity dij . Finding a linear order
can be seen as a Hamiltonian path that visits each object exactly once. Minimizing195

the Hamiltonian path length results in a seriation optimal with respect to the local
structure given only by dissimilarities between neighboring objects (Hubert, 1974; Caraux
& Pinloche, 2005).

3.4. Computational complexity

It is easy to see form the definitions that each group of measures has a different compu-200

tation complexity. Gradient conditions take O(n3) to compute, while rank/dissimilarity
agreement takes O(n2), and path length can be computed in O(n).

4. A review of seriation methods

Seriation is a discrete optimization problem which, in the most general case, involves
evaluating all feasible solutions. Due to the combinatorial nature, the number of possible205
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Technique Objective function
Criterion optimization methods
Integer linear programming (ILP) (Brusco, 2002) Gradient conditions
Dynamic programming (Hubert et al., 2001) Gradient conditions
Branch-and-bound (Brusco & Stahl, 2005) Gradient conditions
Genetic algorithm (Goldberg, 1989; Soltysiak &
Jaskulski, 1998)

Various

Simulated annealing (ARSA) (Brusco et al.,
2008)

Linear seriaiton (mistake
in the published version)

Spectral seriation (Atkins et al., 1999; Ding & He,
2004; Fogel et al., 2014)

2-Sum criterion

TSP solver (various) (Wilkinson, 1971) Hamiltonian path length
Quadratic assignment problem heuristic (QAP)
(Hubert & Schultz, 1976; Caraux & Pinloche,
2005; Goulermas et al., 2016)

2-Sum criterion, linear
seriation, inertia or BAR

Dendrogram methods
Hierarchical clustering (HC) (Eisen et al., 1998) Other (depends on link-

age)
Gruvaeus and Wainer reordering (GW) (Gru-
vaeus & Wainer, 1972)

Restricted path length

Optimal leaf ordering reordering (OLO) (Bar-
Joseph et al., 2001)

Restricted path length

DendSer reordering (Earle & Hurley, 2015) Various (restricted)
Other methods
Multidimensional scaling (MDS) (Kendall, 1971) Other (stress)
Rank-two ellipse seriation (R2E) (Chen, 2002) None
Sorting Points Into Neighborhoods (SPIN)
(Tsafrir et al., 2005)

Other (energy)

Visual Assessment of Tendency (VAT) (Bezdek &
Hathaway, 2002)

Other (MST)

Table 2: Popular seriation techniques.

solutions grows with problem size (number of objects, n) by the orderO(n!). Seriation has
been shown to be an NP-complete problem (George & Pothen, 1997), and many heuristic
methods have been proposed. We organize methods here into methods that directly try
to optimize a seriation criterion, dendrogram-based methods, and other methods which
produce good seriations without directly targeting a specific seriation criterion. Table 2210

summarizes popular methods and indicates for each what, if any, seriation criterion is
optimized.

4.1. Seriation criterion optimization methods

The large, discrete search space makes a brute-force enumerative approach infeasi-
ble for all but very small problems. Seriation problems using linear loss functions can215

be formulated as integer linear programs (ILPs) and solved using standard ILP solvers.
Brusco (2002) discusses ILP formulations for the number of anti-Robinson events and
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for gradient measures and concludes that they are useful for very small problems. To
solve somewhat larger problems, partial enumeration methods can be used. For example,
dynamic programming (Hubert et al., 2001) and branch-and-bound strategies (Brusco &220

Stahl, 2005) were used to optimize the unweighted and weighted gradient measure. How-
ever, these methods are still limited to very moderate sizes of up to 40 objects (Hahsler
et al., 2008). The following methods have been proposed for larger problems.

Metaheuristics like genetic algorithms (Soltysiak & Jaskulski, 1998) and simulated
annealing (Brusco et al., 2008) have been used. For genetic algorithms, many genetic225

operators proposed for the traveling salesperson problem can also be used for seriation
problems. Examples are ordered crossover and simple reversal and swap mutation oper-
ators (Goldberg, 1989).

Spectral seriation uses a relaxation to minimize the 2-Sum criterion (Barnard et al.,
1993). Rewriting the minimization problem using a permutation vector, its rescaled230

inverse, and a Lagrangian multiplier for the constraint allows us to recover the optimal
order from the Fielder vector, i.e., the second smallest eigenvector of the Laplacian of
the similarity matrix.

To minimize the Hamiltonian path length is related to the traveling salesman problem
(TSP), which is a well known and well researched combinatorial optimization problem235

with a large set of heuristics and exact methods (see, e.g., Gutin & Punnen, 2002). The
TSP results in a circular tour, but the problem can be easily transformed into a linear
order problem, by inserting a dummy object which is infinitely distant from all other
objects (Garfinkel, 1985). Cutting the tour at the dummy object results in the desired
path.240

Hubert & Schultz (1976) showed that optimizing the linear seriation criterion can be
rewritten as a type of facility location problem called the Quadratic Assignment Problem
(QAP)

QAP(A,B) : min
π

n∑
i,j=1

aijbπ(i),π(j),

where the objective is to find the optimal assignment for n facilities to exactly one
of n locations each. Flows between the facilities are given by flow matrix A and the
relative position of the locations is represented by distance matrix B. The objective is
to minimize transportation cost given by the sum of all flows times the corresponding
distances. By defining a flow matrix depending on the relative position of objects in the245

seriation order, optimizing the linear seriation criterion can be reformulated as a QAP,
i.e.,

min
π

n∑
i,j=1

dπ(i),π(j) − |i− j| leads to QAP({−|i− j|}n×n,D).

As seriation itself, the QAP is in general also NP-hard, but methods including QIP,
linearization, branch and bound and cutting planes as well as heuristics including Tabu
search, simulated annealing, genetic algorithms, and ant systems can be used to find good250

solutions (Burkard et al., 1999). Barnard et al. (1993) formulate the 2-Sum problem as
QAP({(i − j)2}n×n,S), where the similarity matrix is defined as S = 1

1+D . Similarly,
it is easy to see that optimizing inertia and the BAR criterion can also be formulated
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as QAPs. Inertia leads to QAP({−(i − j)2}n×n,D). For BAR we can define the flow
matrix255

ABAR =

{
b+ 1− |i− j| if |i− j| ≤ b,
0 otherwise.

Then optimizing BAR can be formulated as QAP(ABAR,D).

4.2. Dendrogram methods

Hierarchical clustering produces a series of nested clusterings which can be visualized
by a dendrogram. A dendrogram is a binary tree where the leaf notes represent the
individual objects and each internal node represents joining objects into larger groups of260

similar objects till all objects are joined in the tree’s root. For an example, see Figure 2(a)
later in this paper. As a simple and fast heuristic to find a linear order of objects, the
order of the leaf nodes in a dendrogram structure can be used (Eisen et al., 1998). This
method does not directly optimize a seriation criterion, however, it can be used as a
starting point. Subtrees can be rotated without changing the nested cluster structure,265

and the original leaf node order is typically an artifact of the used clustering algorithm.
To improve the presentation of the dendrogram, several methods for rotating subtrees
to minimize an objective function under the constraints given by the dendrogram have
been proposed. Gruvaeus & Wainer (1972) suggest to obtain a unique order by requiring
to order the leaf nodes such that at each level the objects at the edge of each cluster270

are adjacent to that object outside the cluster to which it is nearest and they provide a
simple heuristic. Bar-Joseph et al. (2001) developed an efficient procedure to rearrange
the dendrogram such that the Hamiltonian path connecting the leaves is minimized and
called this the optimal leaf order. Earle & Hurley (2015) recently developed a general
framework for dendrogram seriation which is able to use various criteria (e.g., path275

length, banded anti-Robinson form, linear seriation criterion). The algorithm applies
node operators (subtree translation and/or rotation) in a greedy fashion to quickly find
solutions of appropriate quality for visualization purposes.

4.3. Other methods

Multidimensional Scaling (MDS) tries to find a lower-dimensional representation of280

the similarity structure between objects by creating new, so-called principle coordinates,
while minimizing the stress (i.e., the squared difference between the dissimilarity of two
objects in the lower-dimensional and the original space). Although seriation is more
closely related to unidimensional scaling, MDS can be used to find reasonable order-
ings (Kendall, 1971). Objects can be ordered along the first principal coordinate ob-285

tained from metric or non-metric MDS. Alternatively, the objects can be projected onto
the first two principal coordinates found by MDS and then ordered by the angle in this
space. The order is then split by the larges angle gap between adjacent objects (Friendly,
2002).

Chen (2002) proposes the rank-two ellipse seriation procedure. For this method, a290

sequence of correlation matrices starting with the dissimilarity matrix is generated. Once
the rank of a generated correlation matrix drops to two, all objects are projected onto
the two eigenvectors of this matrix. The objects form an ellipse which can be used to
extract a seriation order.
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Visual Assessment of Tendency (VAT) (Bezdek & Hathaway, 2002) was developed295

as a visual method to judge if a dataset should be clustered. It creates an order based on
Prim’s algorithm for finding a minimum spanning tree (MST) in a weighted connected
graph representing the dissimilarity matrix. The order in which the objects are added to
the MST represents a seriation order. This method is related to single-link hierarchical
clustering.300

Sorting Points Into Neighborhoods (SPIN) (Tsafrir et al., 2005) tries to minimize the
energy for the permutation matrix using a weight matrix which depends on the rank
difference of objects. The authors suggest two algorithms, the Side-to-Side algorithm
(STS) which tries to push out large dissimilarity values, and the neighborhood algorithm
(NH) which concentrates low dissimilarity values around the diagonal.305

5. Experimental comparison

The goal of this experimental comparison is to produce results which are generalizable
to a wide variety of application areas. To achieve this goal, we have chosen to use
two artificial datasets and ten real-world datasets. After introducing the datasets, we
will use them to compare popular seriation criteria and the results of different seriation310

techniques. We will conclude with identifying the most efficient methods and present
scalability results.

5.1. Datasets

We will use two types of simulated datasets.

� Pre-Robinson data: We create randomly permuted perfect anti-Robinson dis-315

tance matrices by reversing the process of unidimensional scaling. We randomly
pick n coordinates on a line and then calculate pairwise distances to create the
distance matrix. Since these matrices contain a perfect linear order, they represent
easy seriation problems Laurent & Seminaroti (2015).

� Random data: These matrices are created as distance matrices between sets of320

n objects randomly placed into two-dimensional Euclidean space. They represent
hard seriation problems with no apparent linear structure present.

Table 3 summarizes the used real-world datasets. Most datasets are also available in
the R extension package seriation (Hahsler et al., 2016). The datasets come from very
different areas including archaeology, psychology, political science, biology and social325

media. The dataset size ranges from 24 to 229 objects. We will later perform scalability
experiments using random data with up to 10,000 objects.

5.2. Relationship between seriation criteria

Many seriation criteria have been proposed and we have organized them in this paper
into gradient condition, rank/dissimilarity agreement and path length-based. For the330

criteria which have a parameter (RGAR and BAR), we use for the window/band width
the minimum value, 20% of the number of objects (which was suggested as the default
value for BAR (Earle & Hurley, 2015)) and the maximum value.
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Name Description (Source) n
Psych24 Pearson correlation between results of 24 psychological

tests given to 145 seventh and eighth grade students in
a Chicago suburb (Holzinger & Swineford, 1939).

24

Irish Euclidean distances of scaled results of eight referenda
for 41 Irish communities (de Falguerolles et al., 1997).

41

Munsingen Jaccard index for incidence matrix for 59 graves and 70
artifacts (Hodson, 1968).

59

Votes Jaccard index for 16 key votes for a sample of 100 of
435 congress men (1984) encoded as 32 binary features
(Lichman, 2013).

100

Zoo Euclidean distance for 17 features for 101 animals (Lich-
man, 2013).

101

Iris Euclidean distances (scaled) for Fisher’s Iris dataset
with 150 flowers and four features (Fisher, 1936).

150

Wood Euclidean distance for sample of the normalized gene
expression data for six locations in the stem of Popla
trees (Hertzberg et al., 2001).

136

Elutriation Ratios of gene expression levels for a sample of genes
of Saccharomyces cerevisiae with 14 eigengenes (from
SVD) as features. (Euclidean distance) (Alter et al.,
2000)

200

Facebook Sample of individuals from an ego-network. (count of
connections of length 1 and 2) (Leskovec & Krevl, 2014)

200

DBLP Members of the first 10 communities in the computer
science bibliography co-authorship network. (count of
connections of length 1 and 2) (Leskovec & Krevl, 2014)

229

Table 3: Real-world datasets.
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To experimentally establish the relationship between seriation criteria, we create 100
random dissimilarity matrices for 100 objects each, and calculate the value of each crite-335

rion. Then we rank the 100 dissimilarity matrices according to each criterion. Seriation
criteria are similar if they rank the matrices in a similar way, i.e., agree on which matrix
is closer to a good seriation order. To measure pairwise similarity between seriation cri-
teria, we calculate Kendall’s tau rank correlation coefficient from the way each criterion
ranks the 100 matrices resulting in a criterion-to-criterion correlation matrix. To reveal340

structural information in this matrix, we will use a dendrogram-based seriation tech-
nique on a distance matrix obtained by subtracting the correlations from one. We use
hierarchical clustering with Ward’s minimum variance method which is known to lead
to compact clusters (Ward, 1963) and then apply optimal leaf ordering. The resulting
dendrogram is shown in Figure 2(a). Two seriation criteria are more similar, if they are345

joined in the dendrogram at a lower height. We also show the seriated correlation matrix
in Figure 2(b). Note that we only show positive correlations, since we are interested in
the similarity between criteria.

Interestingly, the experiments do not just show the three groups of seriation criteria
described in Table 1, but a more complicated structure. In the dendrogram in Figure 2(a),350

the criteria fall into four groups.

� Group 1: Path length is equivalent to BAR with the minimal band width of b = 2
and also similar to RGAR with minimal and 20% window size.

� Group 2: BAR with the maximal window size is equivalent to the linear seri-
ation (LS) criterion. And both are similar to BAR width a band with of 20%.355

Interestingly, all these rank/dissimilarity agreement criteria are very similar to AR
deviations which is a weighted measure constructed using gradient conditions.

� Group 3: This group contains all gradient condition criteria except AR deviations
and the RGAR with the maximal window sizes.

� Group 4: Contains the rank/dissimilarity agreement measures 2-Sum, Inertia and360

least squares.

The four groups are the result of seriation and thus the order is also meaning full.
It represent an order from focusing on local structure (group 1) to emphasizing global
structure (group 4). The strong emphasis in group 4 results from the fact that the
rank differences are squared in all criteria in this group. Groups 2 and 3 represent an365

intermediate step that considers global structure, but do not overemphasize the influence
of objects that are placed very far from each other.

The seriated correlation matrix in Figure 2(b) shows the same information, however,
it presents a clearer picture showing that AR deviations is correlated with groups 2 and
3. Clustering has placed it into group 2, but by construction it should be part of group 3.370

It also indicates that although the dendrogram splits groups 2 and 3, they are actually
related with each other by forming a clearly visible block.

5.3. Comparison of seriation methods

Next, we experimentally compare the solution quality produced by different seriation
methods. The procedure is to apply each seriation method to a set of datasets, and375
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Figure 2: Similarity between seriation criteria as a (a) dendrogram and (b) an seriated correlation matrix.

then compute the value of different criteria for the found solutions. This is especially
interesting for methods which do not explicitly optimize a seriation criterion like the
dendrogram methods without reordering, MDS, rank-two ellipse seriation, SPIN and
VAT.

In this paper we report the results for two prototypical seriation criteria, namely, anti-380

Robinson events and path length. Experiments not reported in this paper show that the
results within each of the path length-based group and the group formed by gradient-
based and rank/dissimilarity agreement methods are very consistent. We compare the
solutions for the methods shown in Table 2. We exclude ILP, dynamic programming and
branch-and-bound because of their extremely limited scalability. Genetic algorithms are385

also excluded because of the excessive runtime for the used datasets. We implemented
the exact algorithms described in the given references. As a fast TSP heuristic we
use the best solution found in ten runs of the arbitrary insertion heuristic followed by
complete 2-opt local search (Hahsler & Hornik, 2016). Experimentation showed that
this combination produces generally good seriation results. To solve the QAP we use390

the simulated annealing heuristic described by Burkard & Rendl (1984). Implementation
details can be found in Hahsler et al. (2016).

We start with pre-anti-Robinson matrices which contain a perfect linear order. The
result for 10 random pre-anti-Robinson matrices with 100 objects each is shown in the
box plot in Figure 3(a). The box plot shows for each method the criterion’s median value395

(horizontal bar inside the box), the iterquartile range (box) and outliers (circles) for the
10 runs. We use plots since the experiments produce too many values to present them
in table form. Methods are sorted from best to worse median value and ties are broken
alphabetically. We see that many methods perfectly recover the linear structure in the
data resulting in no anti-Robinson evens or the minimal possible path length. This is400

expected because pre-anti-Robinson matrices contain a perfect linear order and seriating
them is known to be an easy problem (Laurent & Seminaroti, 2015).

A much more difficult problem is to seriate random data where no linear order is
present. We create 10 dissimilarity matrices from 100 objects randomly placed in two-
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dimensional Euclidean space. The results are shown in Figure 3(b). We report for path405

length the relative optimality gap where the optimal path length was obtained using
the Concorde TSP solver (Applegate et al., 2006). Finding the optimal solution for AR
events is not feasible and we report the gap to the best found solution instead. In terms
of anti-Robinson events, simulated annealing (ARSA), MDS, QAP and spectral seriation
perform very well while hierarchical clustering and TSP-based methods perform poorly.410

For path length it is exactly the opposite with TSP and hierarchical clustering with
reordering to reduce path length performing the best. These results are expected since
each of the two groups optimizes for one of the two groups of criteria. The only exception
is the good performance of MDS which minimizes stress rather than a criterion related
to anti-Robinson events or the gradient criterion. While Kendall (1971) argued that415

MDS can be used to find reasonable seriation orders, others report that using MDS to
find a single dimension is prone to ending up in local optima (Mair & De Leeuw, 2015).
However, in our experiments MDS performed similar to the best other seriation methods.

To compare the performance on real-world data, we use the ten real-world datasets
introduced above. We report again the relative optimality gap for path length and the420

gap to the best found solution for AR events. The results in Figure 3(c) are very similar
to the results obtained for random data which indicates that real-world data represent
difficult seriation problems. Since the random and identity orders have such a large gap,
the boxes are cut off in the figure.

Next, we investigate how similar the resulting seriation orders produced by different425

methods are. We apply all seriation methods to a dissimilarity matrix for random data
(100 objects) and then compare the resulting orderings pairwise using the absolute value
of Kendall’s rank order coefficient. We use the absolute value since a seriation order
and its reverse are equivalent. We repeat this with 10 random datasets and average
the pairwise correlations. For visualization we use again a dendrogram obtained using430

hierarchical clustering with Ward’s minimum variance criterion and optimal leaf ordering.
Figure 4(a) shows the dendrogram. The methods fall into tree groups.

� Group 1: This group contains all methods based on complete-link hierarchical
clustering with and without different reordering strategies (DendSer methods, OLO
and GW).435

� Group 2: Contains simulated annealing (ARSA), most QAP-based methods (LS,
2-Sum and inertia), metric/nonmetric MDS, spectral seriation and the neighbor-
hood SPIN algorithm.

� Group 3: Consists of the remaining methods which are only very loosely related
to each other and the methods in group 2. As expected, identity and random order440

are not related to any other method.

The seriated correlation matrix in Figure 4(b) shows the same result with two darker
blocks forming groups 1 and 2. These results are interesting since they mean that there
are groups of algorithms which produce relatively similar seriation results and, if runtime
or scalability are important for the application then we can use the fastest, most scalable445

algorithm in the respective group.
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(b) Gap in % on random data.
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(c) Gap in % on the ten real datasets.

Figure 3: Anti-Robinson events and Hamiltonian path length for different seriation methods on (a) a
Pre-Robinson matrix, (b) random data, and (c) ten real datasets.
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Figure 4: Similarity between orders produced by different seriation methods as (a) a dendrogram and
as a (b) seriated correlation matrix.

5.4. Runtime, efficiency and scalability

Runtime and scalability are very important for some applications. For example, for
realtime visualization, reordering needs to be performed almost instantaneously and for
arranging gene expression data, the algorithms need to scale to thousands of objects.450

We perform all runtime experiments on a laptop with an Intel Core i5-4300U CPU
at 1.90 GHz (only using a single core), 8 GB RAM and running R 3.2.3 on Ubuntu
15.10. Figure 5 shows a summary of the runtimes for each algorithm on all datasets
(random, pre anti-Robinson and real-world data). Obviously, identity and random are
the fastest since they do not perform any seriation. The next fastest algorithms are based455

on hierarchical clustering with reordering. MDS, spectral seriation and TSP are in the
middle followed by R2E, several QAP formulations and Dendser. The slowest are ARSA
and the SPIN version. Note however, that the SPIN algorithms are implemented purely
in R (an interpreted language) and thus are at a disadvantage against the others which
are at least partially implemented in much faster C or FORTRAN.460

To compare performance in terms of both, the quality of the seriation and speed,
we use again all datasets and calculate average runtimes and the average gap to the
best results found. Figure 6 shows all methods by average speed and gap. Efficient
gap/speed combinations are marked and annotated with the method’s name. The best
results for AR events are produced by QAP formulations which take on average 20 ms.465

They outperform ARSA by producing similar quality but an order of magnitude faster.
Spectral seriation and metric MDS and spectral seriation, which have a gap below 20%,
are much faster with an average runtime around 5 ms. Dendrogram-based methods are
fast, but produce inferior results with a gap greater than 40%. For path length, TSP
produces the best results followed by hierarchical clustering with optimal leaf ordering470

(OLO) and various hierarchical clustering methods.
So far we have only presented results with very small datasets of around 100 ob-

jects, and we know that the worst case complexity of seriation is O(n!). To investigate
scalability to larger datasets we use again random data. We start with 100 objects and
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Figure 5: Comparison of runtime on all datasets.
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Figure 7: Scalability results for selected seriation methods.

then we double the number of object in each run. We only report here the results for475

a representative set of methods chosen from the efficient methods and close runners up
identified above. We use a time limit of 5 minutes per run and stop once all methods run
out of time. The results are shown in a log-log plot in Figure 7. To make methods using
different programming languages comparable, we normalized runtime by the time it takes
to seriate 100 objects. We also added grey lines for complexity of O(n), O(n2), O(n3)480

and O(n4) for reference. ARSA and the QAP solver for the linear seriation criterion are
the most expensive with a complexity close to O(n4). These methods also run out of
the time limit first at around 1000 and 2000 objects, respectively. Spectral seriation and
metric MDS are very similar to each other with complexity lower than O(n3). This is not
surprising since both are based on eigenvalue decomposition. Both can seriate around485

10,000 objects in under 5 minutes. Interestingly, the used TSP solver and hierarchical
clustering with optimal leaf ordering have similar runtime complexity starting out with
close to linear complexity for very small problems and then pick up and get close to MDS
and spectral seriation with O(n3). These two methods are still the fastest and can also
seriate up to 10,000 objects within the time limit.490

It is interesting to note that methods which perform equally well in terms of the
seriation criterion also have very similar complexity. In conclusion, we found that for
practical applications spectral seriation and metric MDS provide a good tradeoff between
seriation quality and runtime for gradient condition and rank/dissimilarity agreement-
based criteria, while hierarchical clustering with optimal leaf ordering provides a good495

tradeoff for path length. Researchers and practitioners can conduct experiment with
their own data using the R extension package seriation (Hahsler et al., 2016).

6. Conclusion

In this paper we provided a review and an experimental comparison of the most
popular seriation criteria and heuristic methods used for seriation of one-mode two-way500

data. While criteria by construction fall into three groups based on gradient conditions,
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rank/dissimilarity agreement and path length, the experimental study suggests that in
addition a fourth group with the linear seriation criterion (including related banded anti-
Robinson form criteria) and the gradient-based weighted Anti-Robinson events exits.
The study also shows that the grouping sorts the criteria from representing only local505

structure all the way to a strong emphasis on global structure. Depending on which is
more important for the application, criteria from a different groups can be used.

The comparison of popular seriation methods shows that the methods based on hier-
archical clustering produce very similar results. All methods based on direct optimization
of seriation criteria plus some other methods (metric MDS and SPIN) produce also very510

consistent seriation orders, while all other methods (including a pure TSP solver) create
very different seriation results. For gradient-based seriation, QAP-based methods pro-
duce the best quality, while metric MDS and spectral seriation are very competitive and
scale for larger datasets of up to 10,000 objects in under 5 minutes. For path length,
hierarchical clustering with optimal leaf ordering performs very well and also scales to515

up to 10,000 objects in under 5 minutes.
Different seriation criteria and seriation methods highlight different structural aspects

of the data and thus might be useful to explore in order to detect patterns which can be
used to support decision making. This is easy to do with the open source software (Hah-
sler et al., 2016) used for all experiments in this paper.520
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