DS 1300 - Introduction to Database Systems

Based on slides by Dan Suciu
Adapted by Michael Hahsler
Database

What is a database?
• Physical storage: A collection of files storing related data.
• Logical: A collection of tables (or objects).

Examples of databases
• Accounts database; payroll database; SMU’s students database; Amazon’s products database; airline reservation database.
What is a DBMS?

- A complicated (and often expensive) piece of software typically running on a large (remote) server written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time.

Examples of DBMS

- Commercial: DB2 (IBM), SQL Server (MS), Oracle, Sybase
- Open Source: MySQL, Postgres, SQLite, ...
- Big Data: often NoSQL like MongoDB, Apache Cassandra, etc.
Architecture: Using a DMBS

“Client-server Architecture”

Data files

Database server running the DBMS

connection

(ODBC, JDBC)

Applications running a client
Operations: Query/Update

Assume we have a database for movies and actors.

• Simple query:
 In what year was ‘Star Wars’ produced?

• Multi-table query:
 Find all movies with ‘Harrison Ford’
 (combine actor and movie tables)

• Complex query:
 For each actor, count her/his movies

• Updating
 Insert a new movie;
 add an actor to a movie; etc
Operations: Query/Update

- Files (e.g., CSV)
 - Simple queries

- Spreadsheets
 - Multi-table queries (maybe)

- DBMS
 - All

Updates: generally OK
Change the Structure of a DB

Add *Address* to each Actor

- Files (e.g., CSV) *Very hard*
- Spreadsheets *Yes*
- DBMS *Yes*
Relational Data Base
= Collection of Tables

Actors:

<table>
<thead>
<tr>
<th>id</th>
<th>fName</th>
<th>LName</th>
</tr>
</thead>
<tbody>
<tr>
<td>15901</td>
<td>Harrison</td>
<td>Ford</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Movie_Actors:

<table>
<thead>
<tr>
<th>id</th>
<th>mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>15901</td>
<td>130128</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Movies:

<table>
<thead>
<tr>
<th>mid</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>130128</td>
<td>Star Wars</td>
<td>1977</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Create/Store Large Datasets

Use SQL to create and populate tables:

```
CREATE TABLE Actors ( 
  fName CHAR(30), 
  lName CHAR(30), 
  . . .
)
```

```
INSERT INTO Actors
VALUES('Harrison', 'Ford', . . .)
```

Physical organization of the data is handled by DBMS
We focus on modeling the database!
Querying

• Find all movies with ‘Harrison Ford’

```sql
SELECT title
FROM Movies, Actors, Movie_Actors
WHERE Actors.lname = 'Ford' and
  Actors.fname = 'Harrison' and
  Movies.mid = Movie_Actors.mid and
  Movie_Actors.id = Actors.id
```

• What happens behind the scene?
 The DBMS uses indices and optimizes automatically the query...
Change the Structure of a Table

Add *Address* to each Actor

```
ALTER TABLE Actor
ADD address CHAR(50)
DEFAULT 'unknown'
```
What comes next?

1) Using a DBMS
2) Using SQL to Query Databases
3) Designing a Database