MY NEW PRODUCT IS A DATABASE OF FAMOUS SERIAL KILLERS.

YOU CAN SEARCH THE DATABASE BY NAME, WEAPON OR TATTOO.

LET ME GUESS, WALLY: SIX MONTHS AGO OUR YOUNG INTERN ASKED YOU WHAT THE TERM “KILLER APPLICATION” MEANT.
Database

What is a database?

Physical storage: A collection of files storing related data.

Logical: A collection of tables (or objects).

Examples of databases

Accounts database; payroll database; SMU’s students database; Amazon’s products database; airline reservation database.
Database Management System

What is a DBMS?

A complicated (and often expensive) piece of software typically running on a large (remote) server written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time.

Examples of DBMS

Commercial: DB2 (IBM), SQL Server (MS), Oracle, Sybase
Open Source: MySQL, Postgres, SQLite, ...
Big Data: often NoSQL like MongoDB, Apache Cassandra, etc.
Architecture: Using a DMBS

“Client-server Architecture”

- Data files
- Database server running the DBMS
- Applications running a client

Connection (ODBC, JDBC)
Assume we have a database for movies and actors.

Simple query:
- In what year was ‘Star Wars’ produced?

Multi-table query:
- Find all movies with ‘Harrison Ford’ (combine actor and movie tables)

Complex query:
- For each actor, count her/his movies

Updating:
- Insert a new movie; add an actor to a movie; etc
Operations: Query/Update

Files (e.g., CSV) → Simple queries

Spreadsheets → Multi-table queries (maybe)

DBMS → All

Updates: generally OK
Change the Structure of a DB

Add Address to each Actor

Files (e.g., CSV) → Very hard

Spreadsheets → Yes

DBMS → Yes
Relational Data Base
= Collection of Tables

<table>
<thead>
<tr>
<th>Actors:</th>
<th>Movie_Actors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>mid</td>
</tr>
<tr>
<td>15901</td>
<td>15901</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>fName</th>
<th>lName</th>
</tr>
</thead>
<tbody>
<tr>
<td>15901</td>
<td>Harrison</td>
<td>Ford</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mid</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>130128</td>
<td>Star Wars</td>
<td>1977</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mid</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Create/Store Large Datasets

Use SQL to create and populate tables:

```
CREATE TABLE Actors ( fName CHAR(30), lName CHAR(30), . . . )
INSERT INTO Actors VALUES('Harrison', 'Ford', . . .)
```

Physical organization of the data is handled by DBMS
We focus on modeling the database!
Querying

Find all movies with ‘Harrison Ford’

```
SELECT title
FROM Movies, Actors, Movie_Actors
WHERE Actors.lname = 'Ford' and
    Actors.fname = 'Harrison' and
    Movies.mid = Movie_Actors.mid and
    Movie_Actors.id = Actors.id
```

What happens behind the scene?

• The DBMS uses indices and optimizes automatically the query...
Change the Structure of a Table

Add *Address* to each Actor

```
ALTER TABLE Actor
ADD address CHAR(50)
DEFAULT 'unknown'
```
What comes next?

1) Using a DBMS
2) Using SQL to Query Databases
3) Designing a Database