
DS 1300 - Introduction to SQL
Part 3 – Aggregation & other Topics

by Michael Hahsler
Based on slides for CS145 Introduction to Databases (Stanford)

Lecture Overview

1. Aggregation & GROUP BY

2. Advanced SQL-izing (set operations, NULL,
Outer Joins, etc.)

2

AGGREGATION, GROUP BY AND HAVING
CLAUSE

3

Aggregation

4

SELECT COUNT(*)
FROM Product
WHERE year > 1995

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except for COUNT, all
aggregations apply to
a single attribute!

Except for COUNT, all
aggregations apply to
a single attribute!

SELECT AVG(price)
FROM Product
WHERE maker = ‘Toyota’

SELECT AVG(price)
FROM Product
WHERE maker = ‘Toyota’

• SQL supports several aggregation
operations:
• SUM, COUNT, MIN, MAX, AVG

Aggregation: COUNT

5

COUNT counts the number of tuples including duplicates.

SELECT COUNT(category)
FROM Product
WHERE year > 1995

SELECT COUNT(category)
FROM Product
WHERE year > 1995

Note: Same as
COUNT(*)!
Note: Same as
COUNT(*)!

We probably want count the number of “different” categories:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

More Examples

6

Purchase(product, date, price, quantity)Purchase(product, date, price, quantity)

SELECT SUM(price * quantity)
FROM Purchase
SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do these mean?

Simple Aggregations

7

Purchase
Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 1*20 + 1.50*20)

Grouping and Aggregation

8

SELECT product,
 SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

SELECT product,
 SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

Let’s see what this means…

Find total
sales after
Oct 1, 2010,
per product.

Purchase(product, date, price, quantity)Purchase(product, date, price, quantity)

Note: Be
very careful
with dates!
Use
date/time
related
functions!

Grouping and Aggregation

9

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and
aggregates

Semantics of the query:

1. Compute the FROM and WHERE clauses

10

Product Date Price Quantity

Bagel 2000-10-21 1 20

Bagel 2000-10-25 1.50 20

Banana 2000-10-03 0.5 10

Banana 2000-10-10 1 10

SELECT product, SUM(price*quantity) AS
TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

SELECT product, SUM(price*quantity) AS
TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

FROM

Product Date Price Quantity

Bagel 2000-10-21 1 20

Bagel 2000-10-25 1.50 20

Banana 2000-10-03 0.5 10

Banana 2000-10-10 1 10

2. Group by the attributes in the GROUP BY

11

SELECT product, SUM(price*quantity) AS
TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

SELECT product, SUM(price*quantity) AS
TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
2000-10-21 1 20

2000-10-25 1.50 20

Banana
2000-10-03 0.5 10

2000-10-10 1 1

3. Compute the SELECT clause: grouped
attributes and aggregates

12

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘2000-10-01’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECT
Product Date Price Quantity

Bagel
2000-10-21 1 20

2000-10-25 1.50 20

Banana
2000-10-03 0.5 10

2000-10-10 1 10

Activity

1) What do the next two queries calculate?

SELECT SUM(price) AS total, SUM(price) *1.08 AS totalPlusTax

 FROM Product pr

 JOIN Purchase p ON pr.PName = p.product

 WHERE p.buyer = 'Joe Blow'

SELECT p.buyer, SUM(price) AS total, SUM(price) *1.08 AS totalPlusTax

 FROM Product pr

 JOIN Purchase p ON pr.PName = p.product

 GROUP BY p.buyer

 ORDER BY 1

2) Write a query to find the price of the most expensive product in each category. 13

Company(Cname, country)
Product(PName, price, category, manufacturer)
Purchase(id, product, buyer)

Company(Cname, country)
Product(PName, price, category, manufacturer)
Purchase(id, product, buyer)

HAVING Clause

14

Same query as before,
except that we consider
only products that have
more than 100 buyers

HAVING clauses contains conditions on aggregatesHAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘2005-10-01’
GROUP BY product
HAVING SUM(quantity) > 100

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘2005-10-01’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…Whereas WHERE clauses condition on individual tuples…

Purchase(product, date, price, quantity)Purchase(product, date, price, quantity)

General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates

over other attributes

• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions
15

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

Why?Why?

General form of Grouping and Aggregation

16

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the attributes
in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Compute aggregates in S and do projection (SELECT)

4. Apply condition C2 to each group (may have aggregates)

3
1

2
4

Activity

1) What does this query do?

SELECT p.buyer, SUM(price) AS total, COUNT(*) AS purchases

FROM Product pr

JOIN Purchase p ON pr.PName = p.product

GROUP BY p.buyer

HAVING purchases >2

ORDER BY 1

2) What products in the DB have a revenue of more then $10,000?
17

Company(Cname, country)
Product(PName, price, manufacturer)
Purchase(id, product, buyer)

Company(Cname, country)
Product(PName, price, manufacturer)
Purchase(id, product, buyer)

OTHER SQL TOPICS: SUBQUERIES, NULLS,
CASTING, OUTER JOINS AND ADDING DATA

29

Subqueries

30

SELECT *
 FROM (SELECT product, COUNT(product) AS count
 FROM Purchase GROUP BY product)
 WHERE count > 2

SELECT *
 FROM (SELECT product, COUNT(product) AS count
 FROM Purchase GROUP BY product)
 WHERE count > 2

SELECT *, (SELECT count(*) FROM Product p1
 WHERE p1.category = p2.category) AS '# Prod. in Cat.'
 FROM Product p2

SELECT *, (SELECT count(*) FROM Product p1
 WHERE p1.category = p2.category) AS '# Prod. in Cat.'
 FROM Product p2

Subqueries can appear wherever a table or a value is needed.Subqueries can appear wherever a table or a value is needed.

NULL VALUES & OTHER DETAILS

43

NULL Values

• Whenever we do not have a value, we can use NULL

• Can mean many things:
– Value does not exists

– Value exists but is unknown (n/a, not available)

– Value not applicable

• The schema specifies for each attribute if it can be
null (nullable attribute) or not with NOT NULL

44

NULL Values and Operators

For numerical operations:
– If x = NULL then 4*(3-x)/7 is also NULL

For boolean operations, in SQL there are three values:

FALSE = 0

TRUE = 1

UNKNOWN

If x= NULL then x=‘Joe’ is UNKNOWN

Note: comparison in SQL is a single ‘=‘

45

SQLite does not have a
boolean datatype. It uses
Integer instead!
Try:
• SELECT 2>1
• SELECT 2>NULL
• SELECT 1+NULL

SQLite does not have a
boolean datatype. It uses
Integer instead!
Try:
• SELECT 2>1
• SELECT 2>NULL
• SELECT 1+NULL

Null Values in the WHERE Clause

46

SELECT *
FROM Person
WHERE (age < 25)
 AND (height > 6 AND weight > 190)

SELECT *
FROM Person
WHERE (age < 25)
 AND (height > 6 AND weight > 190)

Will not return age=20, height=NULL, weight=200
Since NULL > 6 is UNKNOWN!
Will not return age=20, height=NULL, weight=200
Since NULL > 6 is UNKNOWN!

NULL Values in WHERE Clauses
Unexpected behavior:

47

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Should return all persons, but
persons with NULL as age are not included!
Should return all persons, but
persons with NULL as age are not included!

You can use CASE with IS NULL, ISNULL(), IFNULL() or COALESCE()
to handle NULL values.

CASTing Data Types
SQL is a typed language. I.e., values and columns have a

data type.

48

SELECT 3/2
SELECT 3.0/2
SELECT 3/2.0
SELECT CAST(3 AS DOUBLE)/2

SELECT 3/2
SELECT 3.0/2
SELECT 3/2.0
SELECT CAST(3 AS DOUBLE)/2

1
1.5
1.5
1.5

1
1.5
1.5
1.5

Typecasting rules are similar to other typed languages like C++.

RECAP: Inner Joins
Inner joins select all rows from both tables as long as there is a match between the

columns in both tables. Inner joins are the default in SQL.

Example: What stores sell what products?

49

SELECT Product.name, Purchase.store
FROM Product
 JOIN Purchase ON Product.name =

Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product
 JOIN Purchase ON Product.name =

Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)
Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!

Inner Joins + NULLS = Lost data?

50

However: Products that were never sold in any store (with no Purchase tuple)
will be lost!

However: Products that were never sold in any store (with no Purchase tuple)
will be lost!

SELECT Product.name, Purchase.store
FROM Product
 JOIN Purchase ON Product.name =

Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product
 JOIN Purchase ON Product.name =

Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)
Product(name, category)
Purchase(prodName, store)

Outer Joins
An outer join returns also tuples from the joined relations that
do not have a corresponding tuple in the other relations (filled
with NULL values).

Left outer joins in SQL:

51

SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sellNow we’ll get products even if they didn’t sell

INNER JOIN:

52

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

SELECT Product.name, Purchase.store
FROM Product
 INNER JOIN Purchase
 ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product
 INNER JOIN Purchase
 ON Product.name = Purchase.prodName

LEFT OUTER JOIN:

53

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase
 ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase
 ON Product.name = Purchase.prodName

Other Outer Joins
● Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

54

SQLite currently only supports LEFT OUTER JOIN, but you
can easily just change the order of the tables in the query.
SQLite currently only supports LEFT OUTER JOIN, but you
can easily just change the order of the tables in the query.

Adding Data
INSERT INTO TABLE_NAME

[(column1, column2, column3,...columnN)]

VALUES (value1, value2, value3,...valueN);

Note: column names are optional.

55

INSERT INTO Product
VALUES ('Gizmo', 19, 'Gadgets', 'GWorks')
INSERT INTO Product
VALUES ('Gizmo', 19, 'Gadgets', 'GWorks')

Adding Data
The data can also come from an existing table.

INSERT INTO first_table_name [(column1, column2, ... columnN)]

 SELECT column1, column2, ...columnN

 FROM second_table_name

 [WHERE condition];

56

Removing a Table

DROP TABLE database_name.table_name

57

Select Syntax
Diagram (SQLite)

http://www.sqlite.org/lang.html

Activity

Review (http://www.tutorialspoint.com/sqlite/):

• Transaction control

• Views

• Indexes

• Date & Time

59

	Slide 1
	Lecture Overview
	Aggregation, GROUP BY and having clause
	Aggregation
	Aggregation: COUNT
	More Examples
	Simple Aggregations
	Grouping and Aggregation
	Grouping and Aggregation
	1. Compute the FROM and WHERE clauses
	2. Group by the attributes in the GROUP BY
	3. Compute the SELECT clause: grouped attributes and aggregates
	Activity
	HAVING Clause
	General form of Grouping and Aggregation
	General form of Grouping and Aggregation
	Activity
	Advanced SQL: NULLs, CASTING and Outer Joins
	Subqueries in other places
	Null Values & other details
	NULL Values
	Null Values and Operators
	Null Values in the WHERE Clause
	Null Values in WHERE Clauses
	CASTing Data Types
	RECAP: Inner Joins
	Inner Joins + NULLS = Lost data?
	Outer Joins
	INNER JOIN:
	LEFT OUTER JOIN:
	Other Outer Joins
	Adding Data
	Adding Data
	Removing a Table
	Select Syntax Diagram (SQLite)
	Activity

