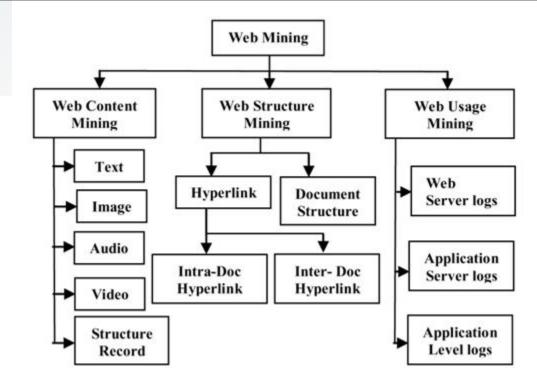


Web Usage Mining

Bolong Zhang 3/27/2019

Outline

- > Overview
- > Aim & Obejective


_

- > Different Levels
- > Algorithm
- Clustering Techniques

Overview

Web Mining

Finding information and patterns from the World Wide Web

Web Usage Mining

Discovering user's navigation pattern and predicting user's behavior

Web Server Logs

1	2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221 HTTP/1.1 maya.cs.depaul.edu		
	Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.507 http://dataminingresources.blogspot.com/	127)	
2	2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 20 HTTP/1.1 maya.cs.depaul.edu Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.507 http://maya.cs.depaul.edu/~classes/cs589/papers.html		
3	<pre>2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 318814 HTTP/1.1 maya.cs.depaul.edu Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1) http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web4</pre>		
4	2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 379 HTTP/1.1 maya.cs.depaul.edu Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) http://maya.cs.depaul.edu/~classes/cs480/	Meta D	
5	2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636	ExampleS	
	HTTP/1.1 maya.cs.depaul.edu Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)		
	http://maya.cs.depaul.edu/~classes/cs480/announce.html	Row No.	ses
6	2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027 HTTP/1.1 maya.cs.depaul.edu Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1) http://maya.cs.depaul.edu/~classes/cs480/announce.html	2 3 4 5	s1 s2 s3 s3
		6	s3 s4
	parameters of log files:	7	s4
		8	s4
	(1)User Name	9	s5
	(2)Visiting Path	10	s6
	(3)Time Stamp	11	s7
	• •	10	-

records the browsing behavior of site visitors

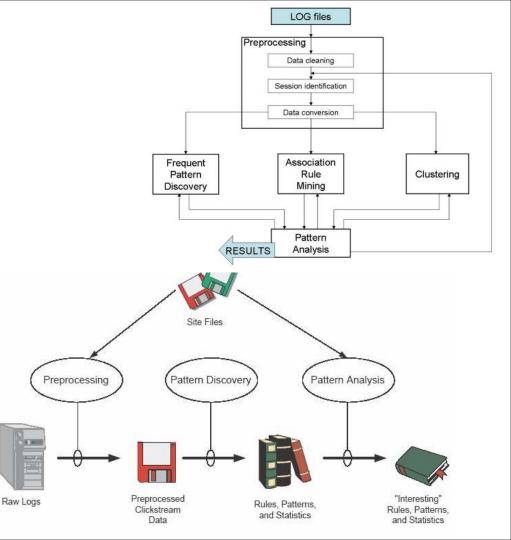
<ip_addr> <base_url> - <date> <method> <file> <protocol> <code> <bytes> <referrer> <user_ag</pre> ent>

Jir//i. maya.cs.depadu.edu									
<pre>ozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)</pre>									
ttp://maya.cs.depaul.edu/~classes/cs480/	🔘 Meta Da	ata View 🍥	Data View 🔘 P	lot View 🔘 Advanced Charts 🔘 Annotations			G 🤌	•	
006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636	EvomploSc	+ (20074 a)	omplos 0 sposi	ial attributes, 9 regular attributes)	View Filter (3997	1 1 20074		J.	
ozilla/4 0+(compatible: MSTE+6 0: +Windows+NT+5 1: +SV1)		1 (33374 6/	ampies, o speci	al attributes, 5 regular attributes/	View Filter (3997		747: an		
ttp://maya.cs.depaul.edu/~classes/cs480/announce.html	Row No.	session	ip	agent	uri	time	referer		
006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027	1	sl	ip1664.com	msnbot/1.0 (+http://search.msn.com/msnbot.htm)	/robots.txt	18868620	?	4	
006-02-02 19:34:45 3.4.5.6 - GET /CLASSES/CS480/header.glf - 200 602/ TTP/1.1 maya.cs.depaul.edu	2	sl	ip1664.com	msnbot/1.0 (+http://search.msn.com/msnbot.htm)	/gpspubs/sigkdd-kdd99-panel.html	18868620	?		
ozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)	3	s2	ip1115.unr	Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; SAFEXPLORER TL)	/news/99/n23/i12.html	18868621	http://discount-blah1.pr		
ttp://maya.cs.depaul.edu/~classes/cs480/announce.html	4	s3	ip2283.unr	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/dmcourse/data_mining_course/assignmei	18868621	http://www.google.com/		
	5	s3	ip2283.unr	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/dmcourse/dm.css	18868621	http://www.kdnuggets.c		
	6	s4	ip1389.net	Mozilla/4.0 (compatible; MSIE 6.0; X11; Linux i686; en) Opera 8.5	/gpspubs/kdd99-est-ben-lift/sld021.htm	18868622	http://www.google.com/		
parameters of log files:	7	s4	ip1389.net	Mozilla/4.0 (compatible; MSIE 6.0; X11; Linux i686; en) Opera 8.5	/gpspubs/kdd99-est-ben-lift/img021.gif	18868622	http://www.kdnuggets.c		
(1)User Name	8	s4	ip1389.net	Mozilla/4.0 (compatible; MSIE 6.0; X11; Linux i686; en) Opera 8.5	/favicon.ico	18868622	http://www.kdnuggets.c		
	9	s5	ip1946.com	Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ys	/news/2001/n10/15i.html	18868622	?		
(2)Visiting Path	10	s6	ip992.unr	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT; MS Search 4.0 Robot)	/aps/bt4-a.sol_crm.re.html	18868622	?		
(3)Time Stamp	11	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	<i>I</i>	18868624	?		
(4)Page Last Visited	12	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/kdr.css	18868624	http://www.kdnuggets.c		
	13	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/images/KDnuggets_logo.gif	18868624	http://www.kdnuggets.c		
(5)Success Rate	14	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/images/kdnuggets.co.jp.gif	18868624	http://www.kdnuggets.c		
(6)User Agent	15	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/aps/awl.js	18868624	http://www.kdnuggets.c		
(7)URL	16	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/images/newy.gif	18868624	http://www.kdnuggets.c		
. ,	17	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/aps/bt4-a.ind.gif	18868624	http://www.kdnuggets.c		
(8)Request Type	18	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/aps/f-spss-h2.ind.gif	18868624	http://www.kdnuggets.c		
	19	s7	ip2213.net	Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)	/aps/t-salf-sd12.c12.gif	18868624	http://www.kdnuggets.c		
	<						5		

Processes

3 main stages

1. Preprocessing:

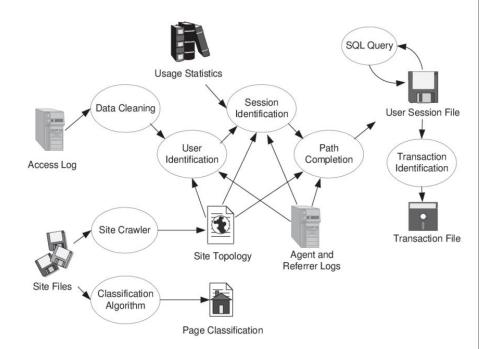

raw data -> data abstraction (users, sessions, episodes, clicktrea ms, and pageviews)

2. Pattern Discovery:

is the key component of WUM, whic h converges the algorithms and tech niques from data mining, machine le arning, statistics and pattern recogni tion etc. research categories.

3. Pattern Analysis:

Validation and interpretation of the m ined patterns


Data Cleaning:

User Identification:

Session Identification:

Path Completion:

Formatting:

Data Cleaning:

Staus Codes:

Sever Error

Redirect:

300 Series

Success: 200 Series

Failures:

404 Page Not Found

401 Unauthorized

403 Forbidden

Al	gorithm: DataPreparation
1.	Start
2.	Check for data available in server log
3.	If raw data is available goto step 4 else goto step 2
4.	Cleaning data by removing gap, .jpg , .gif or sound file.
5.	Execute UserIdentification.
6.	Execute SessionIdentification.
7.	Divide the session in
	transaction with a certain duration.
8.	If any data available goto step 4 else goto step 9
9.	exit

Input: log file Output: cleaned log file Step 1: Begin Read records in log file Step 2: For each record Read (status code, method) Step 3: If (status code= '40*' and method= '**') Then, remove that status field Get IP address and URL link Step 4: If (suffix URL link= {.gif, .jpg, .css, .av} && request= "implicit") Then, remove that URL link Else Save IP address and URL link End if End if Step 5: If (status code! = '40*' and method= '**') Then, Get IP address and URL link If (suffix URL link= {.gif, .jpg, .css, .av} && request= "implicit") Then, remove that URL link Else Save IP address and URL link End if End if Next record End for End

User Identification:

associate page references with different users

Input: cleaned log file Output: Unique Users file Step 1: Begin Initialize IP List=0; Users List=0; Browser List=0; No-Of-users=0; Read Record From cleaned log file Step 2: For each page in log file Read Record.IP address and Record. Browser Step 3: If Record.IP address is not in IP List Then, add Record.IP address in to **IP** List Add Record, Browser in to Browser List No-Of-users++ Add new user in to User List. Else If (Record.IPaddress is present in IP List and Record. Browser not in Browser List) Then, No-Of-users++ Add new user in to User List. End If End for

Method	Description	Privacy Concerns	Advantages	Disadvantages
IP Address + Agent	Assume each unique IP address/Agent pair is a unique user	Low	Always available. No additional technology required.	Not guaranteed to be unique. Defeated by rotating IPs.
Embedded Session Ids	Use dynamically generated pages to associate ID with every hyperlink	Low to medium	Always available. Independent of IP addresses.	Cannot capture repeat visitors. Additional overhead for dynamic pages.
Registration	User explicitly logs in to the site.	Medium	Can track individuals not just browsers	Many users won't register. Not available before registration.
Cookie	Save ID on the client machine.	Medium to high	Can track repeat visits from same browser.	Can be turned off by users.
Software Agents	Program loaded into browser and sends back usage data.	High	Accurate usage data for a single site.	Likely to be rejected by users.

Time	IP	URL	Ref	Agent
0:01	1.2.3.4	Α		IE5;Win2k
0:09	1.2.3.4	В	Α	IE5;Win2k
0:10	2.3.4.5	С	120	IE6;WinXP;SP1
0:12	2.3.4.5	В	С	IE6;WinXP;SP1
0:15	2.3.4.5	E	С	IE6;WinXP;SP1
0:19	1.2.3.4	С	Α	IE5;Win2k
0:22	2.3.4.5	D	В	IE6;WinXP;SP1
0:22	1.2.3.4	Α	1.00	IE6;WinXP;SP2
0:25	1.2.3.4	E	С	IE5;Win2k
0:25	1.2.3.4	С	Α	IE6;WinXP;SP2
0:33	1.2.3.4	В	С	IE6;WinXP;SP2
0:58	1.2.3.4	D	В	IE6;WinXP;SP2
1:10	1.2.3.4	E	D	IE6;WinXP;SP2
1:15	1.2.3.4	А	-	IE5;Win2k
1:16	1.2.3.4	С	Α	IE5;Win2k
1:17	1.2.3.4	F	С	IE6;WinXP;SP2
1:26	1.2.3.4	F	С	IE5;Win2k
1:30	1.2.3.4	В	А	IE5;Win2k
1:36	1.2.3.4	D	В	IE5;Win2k

	0:01	1.2.3.4	A	1.50
	0:09	1.2.3.4	В	Α
	0:19	1.2.3.4	С	А
User 1	0:25	1.2.3.4	E	С
	1:15	1.2.3.4	A	172
	1:26	1.2.3.4	F	С
	1:30	1.2.3.4	B	А
	1:36	1.2.3.4	D	В

	0:10	2.3.4.5	С	
User 2	0:12	2.3.4.5	В	С
User 2	0:15	2.3.4.5	E	С
	0:22	2.3.4.5	D	В

User 3	0:22	1.2.3.4	A	1073
	0:25	1.2.3.4	С	Α
	0:33	1.2.3.4	В	С
	0:58	1.2.3.4	D	В
	1:10	1.2.3.4	E	D
	1:17	1.2.3.4	F	С

Session Identification:

divide all pages accessed by users into sessions

Time oriented heuristics consider boundaries on time spent on individual pages or in the entire a site during a single visit

1:36

1.2.3.4

1. sort users

2. sessionize using heuristics: time interval as heuristics

0:01	1.2.3.4	А	I	IE5;Win2k
0:09	1.2.3.4	В	А	IE5;Win2k
0:19	1.2.3.4	С	А	IE5;Win2k
0:25	1.2.3.4	ш	С	IE5;Win2k
1:15	1.2.3.4	А	-	IE5;Win2k
1:26	1.2.3.4	F	С	IE5;Win2k
1:30	1.2.3.4	В	А	IE5;Win2k
1:36	1.2.3.4	D	В	IE5;Win2k

	0:01	1.2.3.4	А	-	IE5;Win2k
	0:09	1.2.3.4	В	А	IE5;Win2k
	0:19	1.2.3.4	С	А	IE5;Win2k
	0:25	1.2.3.4	ш	С	IE5;Win2k
	1:15	1.2.3.4	А	-	IE5;Win2k
	1:26	1.2.3.4	F	С	IE5;Win2k
-	1:30	1.2.3.4	В	Α	IE5;Win2k

D

В

Algorithm: SessionIdentificaton

- 1. Start
- Take time of the first log entries.
- Calculate the threshold time from the starting time.

IE5;Win2k

4. if threshold >30 min session change else same session

5. exit

-

- Statistical Analysis
- Clustering
- Classification
- Association Rules
- Sequential Patterns

Statistical Analysis

Page views, viewing time, length of navigational path

Frequency, mean, median....

Category	Description
General	1) Total number of hits
statistics	2) Total number of visitors
	3) Different errors
	4) Successful visits
	5) Incomplete visits
	6) Error reports
Access	Request Hit and Miss count based on
statistics	1) IP address
	2) URL
Periodical	Access of web pages according to period of
statistics	time e.g. daily, monthly, yearly.

Clustering

Objects:

1. Users

similar navigation patterns

Discovery of visitor groups with common properties and interests Discovery of visitor groups with common behaviour

2. Pages

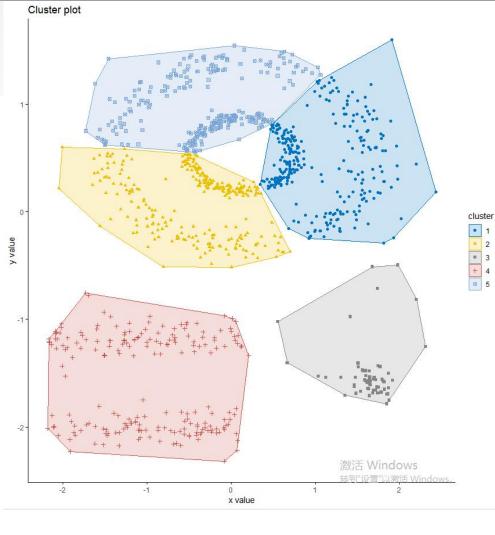
related content

Clustering Algorithm

Density-based algorithms : DBSCAN(common), OPTICS

Grid-based algorithms : STING, CLIQUE, WaweCluster.

Model-based algorithms : MCLUST


Fuzzy algorithms : FCM (Fuzzy CMEANS)

Why not distance-based algorithm?

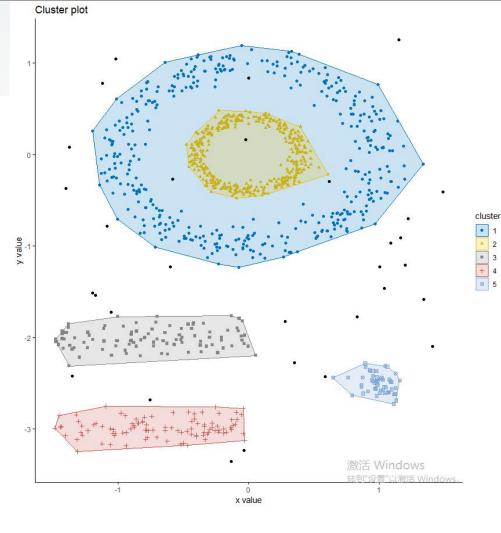
Clustering Algorithm

k- means

DBSCAN can find **non-linearly separable clu sters.**

Clustering Algorithm

Density-based algorithms : DBSCAN, OPTICS

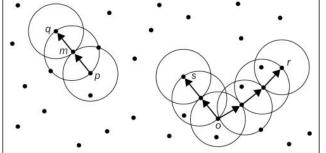

Advantages:

1. Not specify the number of clusters.

2. Any shapes.

3. Identify outliers.

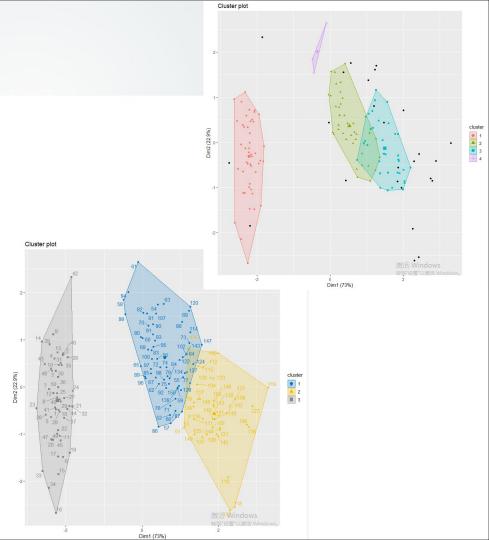
4. Large



DBSCAN

D k Eps MinPts

Eps as radius, minpt as neighborhood density thr eshold. An object is noise only if there is no clust er that contains


DBSCAN $(D, \varepsilon, minpts)$: 1 Core $\leftarrow \emptyset$ 2 foreach $\mathbf{x}_i \in \mathbf{D}$ do Compute $N_{\epsilon}(\mathbf{x}_i)$ 3 $id(\mathbf{x}_i) \leftarrow \emptyset$ 4 if $N_{\varepsilon}(\mathbf{x}_i) \geq minpts$ then $Cores \leftarrow Cores \cup \{\mathbf{x}_i\}$ 5 6 $k \leftarrow 0$ 7 foreach $\mathbf{x}_i \in Core$, such that $id(\mathbf{x}_i) = \emptyset$ do $k \leftarrow k+1$ 8 $id(\mathbf{x}_i) \leftarrow k$ 9 DENSITYCONNECTED (\mathbf{x}_i, k) 10 11 $\mathcal{C} \leftarrow \{C_i\}_{i=1}^k$, where $C_i \leftarrow \{\mathbf{x} \in \mathbf{D} \mid id(\mathbf{x}) = i\}$ 12 Noise $\leftarrow \{\mathbf{x} \in \mathbf{D} \mid id(\mathbf{x}) = \emptyset\}$ **13** Border $\leftarrow \mathbf{D} \setminus \{Core \cup Noise\}$ 14 return C, Core, Border, Noise **DensityConnected** (x, k): 15 foreach $\mathbf{y} \in N_{\varepsilon}(\mathbf{x})$ do $id(\mathbf{y}) \leftarrow k$ 16 if $\mathbf{y} \in Core$ then DENSITYCONNECTED (\mathbf{y}, k) 17

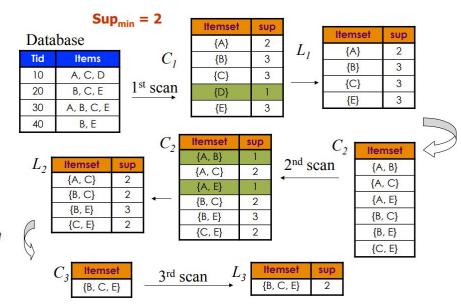
Clustering Algorithm

Fuzzy algorithms : FCM (Fuzzy C MEANS)

Like k-means, however, each point has a weighting associated with a particular cluster

• Association Rules - correlation between users

Frequent itemsets


Apriori algorithm:

- A subset of a frequent itemset must also be a frequent itemset
 - i.e., if {AB} is a frequent itemset, both {A} and {B should be a frequent itemset
- Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)

- Association Rules
- C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support end} \\ \text{return } t = L : \end{cases}$

return $\cup_k L_k$;

-

Association Rules

Candidate Generation -step 1 : self-joining Lk -step 2 : pruning

Example: Suppose we have the following frequent 3-itemsets and we would like to generate the 4-itemsets candidates

L3={{I1, I2, I3}, {I1, I2, I4}, {I1, I3, I4}, {I1, I3, I5}, {I2,I3,I4}} Remove duplicate

- Self-joining: L3*L3 gives:

{I1,I2,I3,I4} from {I1, I2, I3}, {I1, I2, I4}, and {I2,I3,I4}

{I1,I3,I4,I5} from {I1, I3, I4} and {I1, I3, I5}

Pruning: {I1,I3,I4,I5} is removed because {I1,I4,I5} is not in L3

L4={I1,I2,I3,I5}

Association Rules

- Once the frequent itemsets have been found, it is straightforward to generate strong association rules that satisfy:

- □ minimum support
- minimum confidence

- Relation between Support and Confidence

Confidence(X \Rightarrow Y) = P(Y | X) = $\frac{\text{support}_\text{count}(X \cup Y)}{\text{support}_\text{count}(X)}$

support_count(X) is the number of transactions containing the itemset X

Association Rules

For each frequent itemset L, generate all non empty subsets of L
For every non empty subset S of L, output the rule:

If (support_count(L)/support_count(S)) >= min_conf

$$\mathbf{S} \Longrightarrow (L - S)$$

a simple correlation measure - Lift

$$\operatorname{Lift}(X,Y) = \frac{P(X \cup Y)}{P(X)P(Y)}$$

> 1, X, Y positively correlated ; = 1 Independent; <1 negatively correlated

Classification

Classification is done to identify the characteristics that indicate the group to which each case belongs.

K-nearest neighbour

Distance:

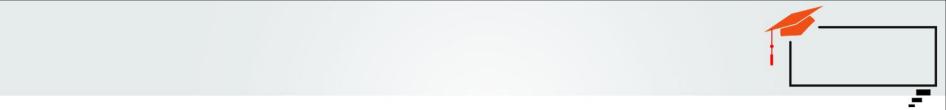
(1) Euclidean Distance: $D(x, y) = ((\sum_{i=1}^{m} |x_{i-}y_{i}|)^{2})^{1/2}$

(2) Manhattan Distance:

 $D(x, y) = \sum |x_{i-}y_i|$ (3) Minkowski Distance $D(x, y) = ((\sum_{i=1}^{m} |x_{i-}y_i|)^r)^{1/r}$ (4) Cityblock, Canberra..... Input Parameters: Data set, k

Output: Class membership

Step 1: Store all the training tuples.


Step 2: For each unseen tuple which is to be classified

A Compute distance of it with all the training tuples using Euclidean Distance.

B. Find the k nearest training tuples to the unseen tuple.

C. Assign the class which is most common in the k nearest training tuples to the unseen tuple.

End for

Thanks

Any quenstions ?