RECOMMENDER SYSTEMS

MOHAMED ELSAIED

02/06/2019

AGENDA

- Motivation
- Problem Formulation
- Types of Recommender Systems
- Content-based Filtering
- Collaborative-based Filtering
- Case Study

RECOMMENDATIONS

http://dbis.informatik.unifreiburg.de/lehre/WS1516/Projekt/Various+Aspects+of+Recommender+Systems/

SCARCITY TO ABUNDANCE

- Physical places does have shelf space which has a real estate cost, so limited number of items can be placed
 - Also TV, theaters, etc ...
- The web has no shelf space limitations
 - From scarcity to abundance
 - "Long Tail" phenomenon arises

THE LONG TAIL

Item ranked by popularity

TYPES RECOMMENDATION SYSTEM

Content Analyzer: represents items – extract features Profile Learner: construct user profile Filtering Components: match content & user profile

MATHEMATICAL MODEL

- C = set of Customers
- S = set of Items

- Utility Function u: $C \times I \implies R$
- R = set of Ratings
- Likert Scale
- Ordinal data

UTILITY MATRIX

	Avatar	LOTR	Matrix	Pirates
James	I.	?	0.2	?
Megan		0.5		0.3
Michael	0.2		I	
Vincent				0.4

KEY PROBLEMS

- Gathering Known ratings for matrix
 - How to collect the data in the utility matrix
- Predict unknown ratings from the known ones
 - Mainly interested in high unknown ratings
- Evaluation of recommender systems
 - Evaluation metrics and measure of performance

GATHERING RATINGS

• Explicit

- People rating items
- Not scalable
- Simple & Direct
- Implicit
 - Learn ratings from users
 - Sentiment Analysis
 - Twitter

PREDICTING UNKNOWN RATINGS

- Challenge
 - Most items are not rated
 - Utility matrix is sparse
 - Cold start
 - New items have no ratings
 - New users have no history

CONTENT BASED

Recommend items by customer x rated similar

to previous items rated highly by x

- Uses implicit & explicit ratings
- For each item, create item profile
- Profile is a set of features (vector)

Towards data science - building recommender system

FEATURES EXAMPLES

- Text features ... find set of important words
- Term Frequency Inverse document frequency (TF-IDF)
 - If a word appears frequently in a document, it's important. Give the word a high score.
 - But if a word appears in many documents, it's not a unique identifier. Give the word a low score.

MAKING PREDICTIONS

- Customers profile
- Items profile

•
$$U(C,I) = cos(\alpha) = \frac{C \cdot I}{(|C||I|)}$$

- Cosine distance is the angle α and cosine similarity is 180 α
- For mathematical convenience we use cos(α) as the similarity measure and call it cosine similarity

PROS AND CONS

- Doesn't need data about other uses
- Works good with unique tastes
- Solves cold start problem (items)
- The approach is interpretable
- Finding relevant features is not easy
- Doesn't capture multiple interest
- Doesn't consider popular items for similar users
- Cold start problem (users)

CONTENT BASED IN PYTHON

```
def contF model(self):
 petitions cosine similarities = linear kernel(np.array(self.petitionF lists))
 count=0
 results = {}
 resultsIndexes={}
 for idx, row in self.petitionFSorted.iteritems():
        similar indices = petitions cosine similarities[count].argsort()[:-10:-1]
        similar items = [(petitions cosine similarities[count][i], self.petitionFSorted[idx]) for i in similar indices]
        # First item is the item itself, so remove it.
        # Each dictionary entry is like: [(1,2), (3,4)], with each tuple being (score, item_id)
        results[idx] = similar items[1:]
        resultsIndexes[idx]=similar indices[1:]
        count+=1
 count=0
 print('done!')
 self.pResults=results
 self.pResultsIndexes=resultsIndexes
```

USER TO USER COLLABORATIVE FILTERING

- Consider Customers C
- Find set N of other customers whose ratings are similar to C's rating
- Predict C's rating based on ratings of users in N
- We need to define a notion of similarity between customers

	Avatar	LOTR	Matrix	Pirates	Hard	BNH	Twil
James	4			5	I		
Megan	5	5	4				
Michael				2	4	5	
Vincent		3					3

Consider users x & y with ratings $r_x \& r_y$

Define a similarity metric sim(x,y)

JACCARD SIMILARITY

	Avatar	LOTR	Matrix	Pirates	Hard	BNH	Twil
James	4			5	I		
Megan	5	5	4				
Michael				2	4	5	
Vincent		3					3

 $Sim(x,y) = \frac{|r_x \cap r_y|}{|r_x \cup r_y|}$ $A = Sim(James, Megan) = \frac{1}{5}$ $B = Sim(James, Michael) = \frac{2}{4}$ $A < B, Not Intuitive \dots Doesn't capture the ratings$

COSINE SIMILARITY

	Avatar	LOTR	Matrix	Pirates	Hard	BNH	Twil
James	4	0	0	5	I	0	0
Megan	5	5	4	0	0	0	0
Michael	0	0	0	2	4	5	0
Vincent		3					3

 $Sim(x,y) = cos(r_x, r_y)$ A = Sim(James, Megan) = 0.38 B = Sim(James, Michael) = 0.32 $A > B \dots \text{ treats missing ratings as negative (problem!)}$

CENTERED COSINE SIMILARITY

	Avatar	LOTR	Matrix	Pirates	Hard	BNH	Twil
James	4			5	I		
Megan	5	5	4				
Michael				2	4	5	
Vincent		3					3

Normalize ratings by subtracting the row mean

CENTERED COSINE SIMILARITY

	Avatar	LOTR	Matrix	Pirates	Hard	BNH	Twil
James	2/3	0	0	5/3	-7/3	0	0
Megan	1/3	1/3	-2/3	0	0	0	0
Michael	0	0	0	-5/3	1/3	4/3	0
Vincent		0					0

- Sim(x,y) = cos(r_x, r_y)
 A = Sim(James, Megan) = 0.09
- B = Sim(James, Michael) = -0.56•
- A > B, More intuitive
- Handle "Tough raters" & "Easy raters" •
- Also named as Pearson Correlation

RATING PREDICTION

- Let r_x vector of users c's ratings
- Let N be the set of k users most similar to c who have also rated item I
- Prediction for user c and item I

• Simple approach:
$$r_{xi} = \frac{1}{K} \sum_{y \in N} r_{yi}$$

• Weighted average:
$$\mathbf{r}_{xi} = \frac{\sum_{v \in N} s_{xv} \mathbf{r}_{vi}}{\sum_{y \in N} s_{xy}} \mathbf{s}_{xy}$$

• $s_{xy} = sim(x,y)$

ITEM TO ITEM COLLABORATIVE FILTERING

- Same approach
 - For item I find other similar items
 - Predict rating for item I based on ratings for similar items
 - Similarity metrics and prediction function can be the same as in user-user

•
$$\mathbf{r}_{xi} = \frac{\sum_{v} e^{N(i,x)} s_{ij} r_{xi}}{\sum_{v} e^{N(i,x)} s_{ij}} s_{ij}$$

 s_{ij} similarity of item I & j r_{xi} similarity of customer x to item j N(l;x) set items rated by x similar to j

	I.	2	3	4	5	6
I.	I		3			I
2			4	2		
3	3	5		4	4	3
4		4	I		3	
5	?		2	5	4	3
6	5				2	
7		4	3			
8				4		2
9	5		4			
10		2	3			
11	4	I	5	2	2	4
12		3			5	

	I.	2	3	4	5	6
I.	I		3			I
2			4	2		
3	3	5		4	4	3
4		4	I		3	
5	?		2	5	4	3
6	5				2	
7		4	3			
8				4		2
9	5		4			
10		2	3			
H	4	I	5	2	2	4
12		3			5	
Sim(1,m)	I.	-0.18	0.41	-0.1	-0.31	0.59

We use Pearson correlation (centered-cosine similarity)

	I.	2	3	4	5	6	
I.	I		3			I	
2			4	2			
3	3	5		4	4	3	
4		4	I		3		
5	?		2	5	4	3	
6	5				2		
7		4	3				The 2 nearest neighborhood to
8				4		2	$r = \frac{(0.41 * 2 + 0.59 * 3)}{2} = 2.6$
9	5		4				(0.41+0.59)
10		2	3				
11	4	Ι	5	2	2	4	
12		3			5		
Sim(1,m)	I.	-0.18	0.41	-0.1	-0.31	0.59	

ITEM-ITEM VS USER-USER

- Theoretically, dual approaches and should have same performance
- Practically, item-item outperforms in most cases
- Reason ... Items are simpler than people!
 - Items can belong to a small subset that belongs to while users may have varied tastes
 - Items similarity are meaningful than user similarity

PROS AND CONS

- Doesn't need feature selection
- Cold start problem
 - New users in the system
- Sparsity
 - User/ratings matrix is sparse
- First raters:
 - Can't recommend unrated items
- Popularity bias:
 - Tends to recommend popular items

LATENT FACTOR MODELS

• Adopt Machine Learning, where we use optimization to build a better recommender

• Most famous is Matrix factorization

• Uses dimensionality reduction

DETOUR – CURSE OF DIMENSIONALITY

- Goal is to find underlying distribution
- As dimension increase you need exponentially more data to find the distribution

https://medium.freecodecamp.org/the-curse-ofdimensionality-how-we-can-save-big-data-from-itselfd9fa0f872335

WHY DIMENSIONALITY REDUCTION

• Remove the noise and have better signal

• Visualization (t-SNE, UMAP)

• Memory and processing

HOW TO REDUCE DIMENSIONALITY

- PCA
- LDA
- GDA
- Autoencoder
- t-SNE
- UMAP
- SVD

SVD

- Rank of a matrix: Number of linearly independent columns
 - Once we know it, we can re-write the matrix more efficient as a linear combination
- Goal is to do discover the axis of the data ...
 - Rather than representing a point as 2 coordinates, we represent it as 1 coordinate
- It minimized the re-construction error (SSE)

SVD – GEOMETRIC REPRESENTATION INTUITION

What happens when we multiply vectors in this circle by X?

- I The coordinate axis get rotated
- 2- the new axis get elongated
- 3- The ellipse gets rotated

SVD

MATRIX FACTORIZATION

• Rating matrix $\mathbf{R} = \mathbf{Q} \cdot \mathbf{P}^{\mathsf{T}}$

Where Q is items to K (Thin and long) P^T is K to users (Fat and small)

DE	TOU	R - EV	Not the best MOP, but this will be out of the scope of the tutorial. Other Alternatives are precision user's top K				
	1.0	2	3	4	5	6	
I.	I		3			I	
2			4	2			
3	3	5		4	4	3	Root-mean-square-error(RMSE)
4		4	I		3		$\sum_{(r_{i})} r_{r_{i}} (r_{r_{i}} - r_{r_{i}})^{2}$
5	?		2	5	4	3	$\sqrt{\frac{-(x+y) \in I < xt - xt - x}{N}}$
6	5				2		Where $N = T $
7		4	3				r _{xi} is the predicted rating
8				4		2	r _{xi} is the actual rating
9	5		4				
10		2	3				lest Set
11	4	I	5	2	2	4	
12		3			5		

MATHEMATICAL MODEL

- How to estimate the missing ratings of user x to item i?
- $r_{xi} = Q_i \cdot P_x^T$

SVD IS AWESOME!

- SVD minimized reconstruction error (SSE)
 - $\min_{U,V,\Sigma} \sum_{ij \in A} \left(A_{ij} [U\Sigma V^{\mathrm{T}}]_{ij} \right)^2$
- This also minimizes RMSE

• Problem is that SVD requires a dense matrix, while our utility matrix is sparse

CAUTION

- We minimize the SSE on the training data, an implication of that is the model tends to memorize the data and fit to noise
- Doesn't generalize well for the test data
- We bump into overfitting problem
- Use cross validation and regularization to prevent overfitting

WORK FLOW

- We are not interested in the absolute value of the objective function but rather the values of P and Q that minimized the objective function
- A good starting point is to initialize P and Q using SVD
- Use any optimization techniques to solve the quadratic equation
 - GD, SDG, Hessian, LBFGS, Liblinear

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

COLLABORATIVE FILTERING IN PYTHON

```
def CF MF recommender(self):
    lmbda = 0.1 # Regularisation weight
    k = 20 # Dimensionality of the latent feature space
    m, n = self.R.shape # Number of users and items
    n epochs = 100 # Number of epochs
    gamma = 0.01 # Learning rate
    # unknown user and items features
    P = np.random.rand(m,k) # initial user feature matrix with random numbers
    Q = np.random.rand(n,k) # initial petition feature matrix with random numbers
    train errors = []
    test errors = []
    # Only consider non-zero matrix
    users, items = self.R.nonzero()
    for epoch in xrange(n epochs):
        for u, i in zip(users, items):
            e = self.R[u, i] - self.prediction(P[u,:], Q[i,:]) # Calculate error for gradient
            P[u,:] += gamma * (e * Q[i,:] - lmbda * P[u,:]) # Update latent user feature matrix
            Q[i,:] += gamma * (e * P[u,:] - lmbda * Q[i,:]) # Update latent petition feature matrix
        train rmse = self.rmse(self.I, self.R, Q, P) # Calculate root mean squared error from train dataset
        test rmse = self.rmse(self.I2, self.T, Q, P) # Calculate root mean squared error from test dataset
        train errors.append(train rmse)
        test errors.append(test rmse)
    self.MF RStar=self.MatrixPred(P,Q)
```

HYBRID METHODS

Add content-based to collaborative filtering

• Implement two or more recommender and combine predictions (ensemble od models)

• This will be discussed in the case study

CASE STUDY

Don't put flame retardant chemicals in sports drinks!

- Sarah Kavanagh started this petition to Gatorade and 8 others
- The other day, I Googled "brominated vegetable oil." It was the

This petition made change with 205,465 supporters!

f Share on Facebook

- 🖪 Send a Facebook message
- 🖂 Send an email to friends
- 🈏 Tweet to your followers
- Copy link

HOW CAN YOU IMPROVE THE RECOMMENDATIONS?

Elnoshokaty, & Wu, 2018

DESIGN SCIENCE APPROACH

EXAMPLE – LATENT SUB TOPIC FEATURES

Traffic Pollution

Pollution

The Graphical model of LDA (Blei et al., 2003)

THANK YOU!

REFERENCES

- Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman
- <u>Performance of recommender algorithms on top-n recommendation tasks</u>—2010, by <u>Paolo</u> <u>Cremonesi, Yehuda Koren, Roberto Turrin</u>
- Trust-aware recommender systems 2007, by Paolo Massa, Paolo Avesani
- <u>A matrix factorization technique with trust propagation for recommendation in social networks</u>—2010, by <u>Mohsen Jamali</u>, <u>Martin Ester</u>
- <u>Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative</u> <u>filtering</u>—2010, by <u>Alexandros Karatzoglou</u>, <u>Xavier Amatriain</u>, <u>Linas Baltrunas</u>, <u>Nuria Oliver</u>
- <u>Hidden factors and hidden topics: understanding rating dimensions with review text</u>—2013, by <u>Julian</u> <u>McAuley</u>, <u>Jure Leskovec</u>