
Attacking Neural Networks

Fooling image classification models with adversarial inputs
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Clever Hans
● Able to perform basic arithmetic, but 

only when trainer asked the questions
● Learned to read involuntary body 

language from trainer
● Machine learning models may achieve 

high accuracy from test set from same 
distribution of training data

● Models can perform poorly when 
exposed to data outside that 
distribution



What is an adversarial input?

[I. Goodfellow, J Shlens & C. Szegedy. Explaining and Harnessing Adversarial Examples] 



Neural networks and gradients



Neural Networks

http://neuralnetworksanddeeplearning.com

● Sequence of matrices (weights) 
and activation functions

● Input vector fed through the 
network by taking dot product 
with weights, and feeding 
product through activation 
functions, then repeat for each 
layer

● Output layer usually a 1 
dimensional sigmoid function 
(range of [0,1]) or n dimension 
softmax function (sum of 
dimensions = 1, give probabilities 
for labels)

 Matrix dimensions:              6x4       ->     4x3        ->      3x1

https://en.wikipedia.org/wiki/Sigmoid_function



Neural Networks
● Training process optimizes weights to 

minimize loss function with gradient descent
● Loss function - measures how correct a 

prediction is
● Gradient descent - move parameters in 

direction of negative gradient until minimum 
found 

● Gradient - vector of partial derivatives
● Weights are moved in direction of gradient of 

loss function with respect to weights

Raschka, Sebastian. Python Machine Learning



Gradients and Jacobians
● Gradients used to see how loss 

function changes
● Jacobians used to see how output 

(softmax or logits) change

https://math.stackexchange.com/questions/1519367/difference-between-gradient-and-jacobian



Cross Entropy

● Common loss function for classification

● Smaller when Prob(y_hat) closer to Prob(y_true)

https://datascience.stackexchange.com/questions/20296/cross-entropy-loss-explanation

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html



Softmax

● Used to map input to a probability 

distribution of classes

● Used as output activation function

● Logits - input to softmax layer, or non 

normalized output of final hidden layer

● x = [-0.2, 0.3, 0.1]
● F(x) with T = 1: [0.250, 0.413, 0.337]

https://en.wikipedia.org/wiki/Softmax_function



Image Classification

● Each pixel value of an image is a feature

● For greyscale: Integer values in [0,255]

● RGB: one 8 bit value per channel

https://ml4a.github.io/ml4a/looking_inside_neural_nets/



Convolutional Neural Networks

https://codetolight.files.wordpress.com/



Image Datasets: MNIST

● Handwritten digits

● 28x28 greyscale images

https://en.wikipedia.org/wiki/MNIST_database



Image Datasets: CIFAR10

● 32x32 RGB images

● 10 classes (vehicles, animals)

https://www.cs.toronto.edu/~kriz/cifar.html



Image Datasets: ImageNet

● 1000 classes

● ImageNet challenge introduced 

breakthrough in computer vision 

performance

https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/



Inception

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke: “Going Deeper with Convolutions”, 2014





Attack Methods



Most are gradient-based optimization methods

● Take gradient of loss function with respect to input to find 

direction to shift pixels

● Multiple optimization methods can be used to minimize 

perturbation



Notation and symbols

● x - original input

● x' - adversarial input

● η - perturbation

● c  or ε - constant to reduce perceptibility

● l - original label

● l' - target label

● Jθ(x', l'), - loss function (usually cross entropy)

● f( ) - image classifier network, map x -> l



Norms

● L
0

 - number of non-zero values

● L
2

 - Euclidean distance

● L
∞

 - absolute max 

https://en.wikipedia.org/wiki/Norm_(mathematics)



L-BFGS method

● First method proposed (2014)

● L-BFGS - second order optimization method, 

more computationally intensive than 

gradient descent, but can perform better

● Use line or binary search to find minimal c
○ initial c at 1e-5
○ double c and run L-BFGS with x as initial 

guess until find f(x') = l'
○ binary search from 0 to c to find smaller c to 

reduce perceptibility

● Slower than most methods

● Can find examples with very little 

perceptibility 

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 
Learning”, 2017



Fast Gradient Sign Method

● Second method proposed

● Not targeted

● "One-step" method (no optimization)

● Tries to increase cost with correct label, 

rather than decrease cost with targeted label

● Often not very successful but was used for 

famous panda image

● Very fast

Xiaoyong Yuan, Pan He, Qile Zhu:
“Adversarial Examples: Attacks and Defenses for Deep Learning”, 2017



Projected Gradient Descent

● aka "Basic Iterative" and "Iterative Least 

Likely"

● Clip pixels from 0-255

● Least likely class can give very interesting 

results

● Faster than L-BFGS but creates larger 

perturbations

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 
Learning”, 2017



Jacobian-based Saliency Map Attack (JSMA)

● Saliency map - shows each pixel's impact on 

output when perturbed

● At each iteration, calculate saliency map and 

perturb pixel with highest saliency by given 

amount θ
● Repeat until f(x') = l' or x' reaches a given 

distortion threshold

● Perturbs smaller areas but often in higher 

amounts

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 
Learning”, 2017

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik: “The Limitations of Deep 
Learning in Adversarial Settings”, 2015



Carlini & Wagner's Attack

● In general most powerful against current 

defenses

● g(x + 𝜼) - <= 0, only if f(x') = l'
○ distance/penalty better optimized
○ Z - softmax
○ k - confidence (usually set to 0)
○ difference between prediction and target 

probability or 0 if predicted target

● 𝜼 - defined directly with range of [0,1] (no 

more clipping)

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 
Learning”, 2017



One-Pixel



One-Pixel
● Uses evolutionary algorithm to find 

adversarials:
○ A candidate solution consists of an xy 

coordinate and RGB pixel value
○ Initialize 400 candidate solutions (parents)
○ Generate 400 candidate solutions for next 

generation by combining parent positions 
and color values (children)

○ Children compete with corresponding 
parents, best are kept for next parent set

○ 100 iterations or early-stop when reaching 
threshold (given probability of target class)

● Weaker on ImageNet models

Xiaoyong Yuan, Pan He, Qile 
Zhu: “Adversarial Examples: 
Attacks and Defenses for 
Deep Learning”, 2017

https://github.com/Hyperparticle/one-pixel-attack-keras



Black-box method

● All previous methods require access to model to get gradient (or at 

least probabilities)

● Many consumer/commercial ML services don't provide anything 

except predicted labels

● Can learn a substitute model to approximate decision boundaries in 

target model

● Jacobian-based augmentation used to synthesize and augment 

dataset to teach substitute model the target's decision boundary



Black-box method

● Identifies sensitive direction of the 
model's decision boundary

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik: “Practical Black-Box Attacks against Machine Learning”, 2016



Defense Methods



Adversarial Training

● Generate adversarial examples and train network with these

● Can improve robustness against one-step method adversarial inputs and black box attacks, but in 

general weak against iterative methods

● Can also add regularization to reduce overfitting



Defensive Distillation

● Distillation - method used to reduce size of DNN 

architectures by training a smaller model with the 

probability outputs from larger model as labels
○ knowledge acquired during training also encoded in 

probability outputs (relative difference between 
classes)

● Defensive Distillation - rather than reduce size, we 

want to increase robustness and smooth decision 

boundaries

● Increasing temperature increases ambiguity between 

probabilities

● Train with high temperature, reset to 1 during test 

time

Softmax with temperature parameter

● x = [-0.2, 0.3, 0.1]
● F(x) with T = 1: [0.250, 0.413, 0.337]
● F(x) with T = 100: 

[0.3324, 0.3341, 0.3335]

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a 
Defense to Adversarial Perturbations against Deep Neural Networks”, 
2015



Defensive Distillation

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015



Defensive Distillation
*JSMA method used for attacks

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015



Adversarial Detecting

● Train secondary neural networks to detect 

adversarials given input or layer outputs of 

target model

● Use PCA to detect properties of inputs or 

network parameters

● Compare distribution with standard 

statistical methods such as maximum mean 

discrepancy or kernel density estimation

● KDE - compare differences of final hidden 

layer outputs with training instances of same 

class

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 
Learning”, 2017



Reconstruction/Purification: PixelDefend

● PixelCNN - generative model that learns 

conditional probability of a pixel based 

on all previous pixels

● PixelDefend - purify image by replacing 

pixels with expected values within range

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves: 
“Conditional Image Generation with PixelCNN Decoders”, 2016

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon: “PixelDefend: Leveraging Generative 
Models to Understand and Defend against Adversarial Examples”, 2017



Attacks in Physical World



Street Signs

● Perturbation must be within bounds of object

● Generation process accounts for physical 

dynamics (viewing angles)

● Mask used to define object's area

● Sample additional instances of input object 

from real and synthetic distribution

● NPS - non printability score, models printer 

color reproduction error
○ p hat - set of printable colors
○ p' - set of colors used in perturbation

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno: 
“Robust Physical-World Attacks on Deep Learning Models”, 2017



Face Recognition

● Targeted attack on facial recognition 

systems

● Generate perturbation that can be printed 

and placed on glasses

● TV - improve smoothness of generated 

image

Sharif, Mahmood & Bhagavatula, Sruti & Bauer, Lujo & Reiter, Michael. (2016). Accessorize to a Crime: 
Real and Stealthy Attacks on State-of-the-Art Face Recognition.



Adversarial Patch

● Generate a "patch" that covers parts of 

image, can be printed out later to use in 

physical world

● A(p, x, l, t) - application operator applying 

patch p, to x with location l and translation t
● Optimize with gradient descent

Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi: “Adversarial Patch”, 2017



3D printed adversarial
 objects

● Generate adversarial texture that can be 

applied to 3D printed objects

● LAB - color space in which numerical 

differences are proportional to 

perceptual differences

● T - set of translation functions

Anish Athalye, Logan Engstrom, Andrew Ilyas: “Synthesizing Robust Adversarial Examples”, 
2017



Code



Implementations / Packages

● Cleverhans
○ Implementations of most effective attacks
○ Tensorflow based, but compatible with Keras and PyTorch models
○ Maintained by authors of most methods (Goodfellow, Carlini, Papernot)

● Foolbox
○ Simpler API
○ More attacks, although some not effective

● IBM Adversarial Robustness Toolbox
○ Implementations of many attack and defense methods





References

● Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep 

Learning”, 2017

● Christian Szegedy et al: “Intriguing properties of neural networks”, 2013

● Ian J. Goodfellow, Jonathon Shlens: “Explaining and Harnessing Adversarial Examples”, 

2014

● Nicholas Carlini: “Towards Evaluating the Robustness of Neural Networks”, 2016

● Anish Athalye, Logan Engstrom, Andrew Ilyas: “Synthesizing Robust Adversarial Examples”, 

2017

● Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to 

Adversarial Perturbations against Deep Neural Networks”, 2015

● Alexey Kurakin et al: “Adversarial Attacks and Defences Competition”, 2018


