Attacking Neural Networks

Fooling image classification models with adversarial inputs

Outline

What is an adversarial input?

Review of neural networks and gradients
Attack methods

Defense methods

Physical world

Code

Clever Hans

Able to perform basic arithmetic, but
only when trainer asked the questions
Learned to read involuntary body
language from trainer

Machine learning models may achieve
high accuracy from test set from same
distribution of training data

Models can perform poorly when
exposed to data outside that
distribution

What is an adversarial input?

+.007 x
. e
g (Ve /0. 2.9) ign(V,0(0,2,9))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[I. Goodfellow, J Shlens & C. Szegedy. Explaining and Harnessing Adversarial Examples]

Neural networks and gradients

Matrix dimensions: 6x4 -> 4x3 -> 3x1

hidden layers

Neural Networks

output layer

e Sequence of matrices (weights)
and activation functions input layer 1

e Input vector fed through the
network by taking dot product
with weights, and feeding
product through activation
functions, then repeat for each
layer

e Outputlayerusuallyal
dimensional sigmoid function
(range of [0,1]) or n dimension 56
softmax function (sum of /
dimensions = 1, give probabilities

L e L 0 1 1 J

for labels) 6 4 -2 0 2 4 s

https://en.wikipedia.org/wiki/Sigmoid_function

http://neuralnetworksanddeeplearning.com

Neural Networks

e Training process optimizes weights to 4
minimize loss function with gradient descent

e Loss function - measures how correct a
predictionis

e Gradient descent - move parameters in
direction of negative gradient until minimum
found

e Gradient - vector of partial derivatives

e Weights are moved in direction of gradient of
loss function with respect to weights

J(w) - Gradient

Raschka, Sebastian. Python Machine Learning

Gradients and Jacobians

e Gradients used to see how loss
function changes

e Jacobians used to see how output
(softmax or logits) change

grad, (f)

Jac,(f)

https://math.stackexchange.com/questions/1519367/difference-between-gradient-and-jacobian

when f : R" — R,then for z in R",

.whenf : R® — R™, then for in R",

" of

a:lfl
af,

2N

6f771

| O

_ (210 o
0xr1 Oz Oz,
o oh 1
Oxy Oz,
af, af,
8'—.1:2 oz,
8fnl afm
Bzy Bz,

Ile

log loss

H(p Zp) log(q(z))

Cross Entropy &= —y - log(y)

Log Loss when true label = 1

10 - T T T T T
L = —(1 xlog(0.1) + 0 x log(0.5)+
8 i
L = —log(0.1) ~ 2.303
6 1 https://datascience.stackexchange.com/questions/20296/cross-entropy-loss-explanation
4l 4
e Common loss function for classification
51 | e Smaller when Prob(y_hat) closer to Prob(y_true)
0 i

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

Softmax e*i

ZK p
e Usedtomapinput to a probability k_]. e k
distribution of classes o

e Used as output activation function

e Logits - input to softmax layer, or non ¢ X= ['0;2’ 0.3,0.1]
normalized output of final hidden layer o F()withT=1:[0.250,0.413,0.337]

https://en.wikipedia.org/wiki/Softmax_function

Image Classification

Each pixel value of an image is a feature
For greyscale: Integer values in [0,255]
RGB: one 8 bit value per channel

\

pixel 1 —Qp

pixel 2—> q

pixel 10— Ox
pixel 11— Or
pixel 12— Or
pixel 13— O
pixel 14— OF
pixel 15— OF
pixel 16— (OF
pixel 17— O
pixel 18— OF
pixel 19— O
pixel 20— Q) —

. — —
pixel 784— &f

https://ml4a.github.io/ml4a/looking_inside_neural_nets/

Convolutional Neural Networks

Convolution FC*
Layer Pooling
@ 4 st Convolution < Lg_yer FC
qu* y Layer Raoling; , —T |\ Layer
““/ n \\ y
| ' /1S \ =
5 — § i %
= | (@) /
= } a /10 10
‘ \ W /_/'
| ’1(')0 Log Softmax
Convolution AAAAAAA Max Pooli Flatt
(5x5kernel) «———» ; Convolution b e e
10 filters Ma)((ZP;);I)mg (5 x5 kernel) (2x2)

*FC=Fully Connected

https://codetolight.files.wordpress.com/

MNIST

Image Datasets

Q=-mzxrwnr=
O/AL?uU,,SG
S~k M=\
N~ Mma-Lo
O~ T U
Q—-xmD> Ve
Q~amMI v\
QAN OGO D
Q=AW >Pw0
ONNeoTnY
ON Y M ITVNY
N— T wvwd
Qe N>
S—=—AMXNInNY
Q—"%MNUO
O~NXMI Y

Handwritten digits

28x28 greyscale images

~w &
N e o~
AN % ¢
th oo s
(A
~ O
= &
c 20
S~ S
S
~ %
[~ %o
-~
D
~w
SRS

q

?99993%94an0 4

https://en.wikipedia.org/wiki/MNIST_database

Image Datasets: CIFAR10 == =:BRE™ » FIEM -
g automobile%ﬁ?g
e 32x32 RGB images e : b B\

X -« EEOHESEEEeP
deer "
dog A< Bre . B
rog Iy N M e i O
norse S IRRESE BN) R B G S TR
e e RS e
vuck o W g I 0 5 o () A

https://www.cs.toronto.edu/~kriz/cifar.html

e 10classes (vehicles, animals)

1000 classes

ImageNet challenge introduced
breakthrough in computer vision
performance

https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/

Inception

Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke: “Going Deeper with Convolutions”, 2014

ONE NOISY BOI

HE ART

WHO WOULD WIN?

NEURAL NETWORK

STATE OF:F

Attack Methods

Most are gradient-based optimization methods

e Take gradient of loss function with respect to input to find
direction to shift pixels

e Multiple optimization methods can be used to minimize
perturbation

Notation and symbols

X - original input

x' - adversarial input

n - perturbation

c or ¢ - constant to reduce perceptibility

| - original label

I' - target label

Je(x', I'), - loss function (usually cross entropy)
f() - image classifier network, map x -> |

Norms

LO - number of non-zero values
L2 - Euclidean distance
L_ - absolute max

https://en.wikipedia.org/wiki/Norm_(mathematics)

L-BFGS method

e First method proposed (2014)

. ! 7/
e L-BFGS - second order optimization method, min CHT] || -+ Jg (.CU , l)
. . . /
more computationally intensive than €x
radient descent, but can perform better /

gradient des perform be s.t. ' €]0,1].

e Uselineor binary search to find minimal c
o initial c at 1e-5 Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep

o double c and run L-BFGS with x as initial Learning’, 2017

guess until find f(x') = I'
o binary search from O to c to find smaller c to
reduce perceptibility
e Slower than most methods
e Canfind examples with very little

perceptibility

Fast Gradient Sign Method

Second method proposed

Not targeted

"One-step" method (no optimization)

Tries to increase cost with correct label,
rather than decrease cost with targeted label
Often not very successful but was used for
famous pandaimage

Very fast

n = esign(VJo(x,1)),

Xiaoyong Yuan, Pan He, Qile Zhu:
“Adversarial Examples: Attacks and Defenses for Deep Learning”, 2017

Projected Gradient Descent

e aka"Basic Iterative" and "Iterative Least Lo = Z,

Likely" Tnt1 = Clipg e{xn + esign(VzJ (zn, y))}-
e Clip pixels from 0-255
e Least likely class can give very interesting

results To =2
e Faster than L-BFGS but creates larger ’)
perturbations yLL = arg mlny{p(y|x)},

LTn+l = Clipx,e{xn - ESig?’L(va(xn, yLL))}'

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

OF(x) [OF;(x)
I X; X j
Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

Jacobian-based Saliency Map Attack (JSMA)

e Saliency map - shows each pixel's impact on
output when perturbed

e Ateachiteration, calculate saliency map and
perturb pixel with highest saliency by given
amount 0

e Repeat until f(x') =I' or x' reaches a given
distortion threshold

e Perturbs smaller areas but often in higher
amounts

10M1 factor

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik: “The Limitations of Deep
Learning in Adversarial Settings”, 2015

rrgn 17]lp +c-g(x+n)

Carlini & Wagner's Attack
st. x+mnel0,1]",

e Ingeneral most powerful against current

defenses
o g(x+m)-<=0,onlyiff(x')=1' , , ,
o distance/penalty better optimized g(aj) — max(ma),((Z(x)z) — Z(x)t, —;4;),
o Z-softmax 171
o k-confidence (usually set to 0) 1
o difference between prediction and target =73 (tanh(w) . 1) —Z

probability or O if predicted target
e 7 -defined directly with range of [0,1] (no

more clipping) 1 |
min ||§(tanh(w) +1)||2+c- g(é tanh(w) + 1).

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

One-Pixel

WHO WOULD WIN?

NUOLUTIONAL
NEURAIINETWORK! ATHIIICICRBOI

Comliten ooy Conaut hedrg My RN QupuPeson
Conted Consecied

- oz 2101}

— atlio
T baat 2.9
brd (006}

i n
Boa) ;_i 7 0| S | I s okl v L

oo
Lo
=

o

0

—

min J(f(2/), 1)
One-Pixel g

Xiaoyong Yuan, Pan He, Qile
Zhu: “Adversarial Examples:

< Attacks and Defenses for
77 O EO ’ Deep Learning”, 2017
e Usesevolutionary algorithm to find

adversarials: €o = 1 for modifying only one pixel

o Acandidate solution consists of an xy ﬂ ‘

coordinate and RGB pixel value
o Initialize 400 candidate solutions (parents)
Generate 400 candidate solutions for next True: siitomobile True: deer Trie: truck

. . e " Pred: truck Pred: airplane Pred: dog

generation by combining parent positions

. - % 1)
and color values (children) h - '
N . .]
o Children compete with corresponding b ‘T: i
i :
parents, best are kept for next parent set @ .
. . . True: horse True: bird True: truck)

o 100 iterations or early-stop when reaching Pred: dog Pretixdeer Prad:auinmoble

threshold (given probability of target class)
e Weaker on ImageNet models

True: automobile True: automobile True: truck
Pred: bird Pred: frog Pred: automobile

https://github.com/Hyperparticle/one-pixel-attack-keras

Black-box method

e All previous methods require access to model to get gradient (or at
least probabilities)

e Many consumer/commercial ML services don't provide anything
except predicted labels

e Canlearnasubstitute model to approximate decision boundaries in
target model

e Jacobian-based augmentation used to synthesize and augment
dataset to teach substitute model the target's decision boundary

Black-box method

Substitute Training
Dataset Collection

Oracle DNN O

s,/'

S() ‘
Substitute Dataset

Labelin
P g

Substitute DNN
Architecture Selection

N\O(5)

Substitute DNN F
Training

Jacobian-based
Dataset Augmentation

F p—p+1

Spr1 = {ZF+ Apy1 - sgn(Jp[O(F)]) : T € S,}U S,

Sp

F,

Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z. Berkay Celik: “Practical Black-Box Attacks against Machine Learning”, 2016

Identifies sensitive direction of the
model's decision boundary

Defense Methods

Adversarial Training

e Generate adversarial examples and train network with these

e Canimprove robustness against one-step method adversarial inputs and black box attacks, but in
general weak against iterative methods

e Canalso add regularization to reduce overfitting

Defensive Distillation | J2i(X)/T

FX) " ez1(X)/T
e Distillation - method used to reduce size of DNN 1=0 1€0..N—-1
architectures by training a smaller model with the Softmax with temperature parameter
probability outputs from larger model as labels
o knowlefjge acquired durir.mg tra‘\ining also encoded in o x= [0.2,0.3, 0.1]
probability outputs (relative difference between o F()With T=1: [O 250,0.413, 0.337]
classes) e F(x)withT=100:

e Defensive Distillation - rather than reduce size, we

want to increase robustness and smooth decision [0.3324,0.3341,0.3335]

boundaries
e Increasing temperature increases ambiguity between
HH™N Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a
prObabI l ities Defense to Adversarial Perturbations against Deep Neural Networks”,
e Train with high temperature, reset to 1 during test 2015

time

Defensive Distillation

oo Probability Vector Predictions F(X)

DNN F trained at temperature T

0

Training Data X o
0

Training Labels Y

Initial Network

Class
Probabilities
Knowledge

0.03
i Probability Vector Predictions F*(X)

0.03

DNN F*(X) trained at temperature T

0.02

4k
Training Data X o Training Labels F(X)

7

Distilled Network

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015

Defensive Distillation

*JSMA method used for attacks

~—Adversarial Samples Success Rate (MNIST) Adversarial Samples Baseline Rate (MNIST)

Adversarial Samples Success Rate (CIFAR10) - - Adversarial Samples Baseline Rate (CIFAR10) Distillation MNIST Adversarial CIFAR10 Adversarial
100 Temperature Samples s(;:;cess Rate Samples S(;::)cess Rate
90 \
i;Ii; 80 1 91
g 70) 2 82.23
- 10 6.78 . arse
B 49 20 1.34 18.23
<
§ 30 30 1.44 13.23
é 20 40 0.45 9.34
10 50 1.45 6.23
0 100 0.45 5.1

1 10 100 N
Distilation Temperature No distillation 95.89 87.89

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015

Adversarial Detecting

e Trainsecondary neural networks to detect | F* 1(x) - F*71(5)|2
adversarials given input or layer outputs of KDE(x) = m Z exp(l) 2 i)
target model s€X;

) Use PCA to detect properties of inputs or Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
network parameters Learnine: 2017

e Comparedistribution with standard
statistical methods such as maximum mean
discrepancy or kernel density estimation

e KDE - compare differences of final hidden
layer outputs with training instances of same
class

o

n2

plx) = Hp(a:ﬂxl, i1 s

1

Reconstruction/Purification: PixelDefend

e PixelCNN - generative model that learns Algorithm 1 PixelDefend
e HH : Input: Image X, Defense parameter €gefeng, Pre-trained PixelCNN model peny
conditional probability of a pixel based Output: Paified Image X*

X*+ X
for each row 7 do
for each column j do
for each channel & do

on all previous pixels 1:
2z
3
4:
5: x + X[i, j, k]
6.
7
8

e PixelDefend - purify image by replacing
pixels with expected values within range

Set feasible range R < [max(z — €gefend, 0), Min(Z + €gefend, 255)]

Compute the 256-way softmax penn (X*).
0 b 11111 Ao L
o : Update X*[i, j, k] - argmax_ ¢ g pcNnN[i, J, k, 2]
gt o B [R 9: end for
/ //' / / 1 1 0o alre: 10: end fOl‘

olololo 11: end for

00|00
Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon: “PixelDefend: Leveraging Generative
Models to Understand and Defend against Adversarial Examples”, 2017

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves:
“Conditional Image Generation with PixelCNN Decoders”, 2016

Attacks in Physical World

Model Physical Dynamics by Sampling 8 8 8 Output SL':S::TD
from Distribution O O 4 5
' s - fo(x)
. o forfsrrionfs o] E—
Street Signs .
}

—

g -
- RP, Mask
Perturbed Stop Sign Under

Input Varying Distances/Angles

e Perturbation must be within bounds of object
e Generation process accounts for physical
dynamics (viewing angles) _
e Mask used to define object's area arggmn A||My - 6||p + NPS
e Sample additional |ns’Fan§es .of |n-put object e]E:I:iNXV J(fo(z; + Ty(M, - 8)), y*)
from real and synthetic distribution
e NPS-non printability score, models printer
color reproduction error

o phat-setof printable colors NPS = E H |13 — p'l

o p' - set of colors used in perturbation .
peER(S) p'EP

Kevin Eykholt, lvan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno:
“Robust Physical-World Attacks on Deep Learning Models”, 2017

Face Recognition

e Targeted attack on facial recognition

OS]
systems softmaxloss(f(x),c.) = —log< §< -)
e Generate perturbation that can be printed >y e T ()
and placed on glasses ¥
e TV -improve smoothness of generated TV {(r) = Z ((Ti,j —mra g1+ vy — Ti,j+1)2) ’
image | el
argmin ((Z softmazloss(z + 7, ¢t))+
™
reX

. TV(T‘) + Ko - NPS(’I"))

Sharif, Mahmood & Bhagavatula, Sruti & Bauer, Lujo & Reiter, Michael. (2016). Accessorize to a Crirr
Real and Stealthy Attacks on State-of-the-Art Face Recognition.

Adversarial Patch

e Generate a "patch" that covers parts of
image, can be printed out later to use in
physical world

e Alp,x,1,t)-application operator applying
patch p, to x with location | and translation t

e Optimize with gradient descent

Classifier Input Classifier Output
e

place sticker on table

o ——
banana siug snail crange

Classifier Output

—_—
toaster banana piggy_bank spaghetti_

p = arg max Ez~x t~Ti~L [log Pr(y|A(p, x,1, t)]

Tom B. Brown, Dandelion Mané, Aurko Roy, Martin Abadi: “Adversarial Patch”, 2017

3D printed adversarial
objects

e Generate adversarial texture that can be
applied to 3D printed objects

e LAB - color space in which numerical
differences are proportional to
perceptual differences

e T -setof translation functions

pray

|
.2
LT
4 !

B classified as turtle [classified as rifle
B classified as other

arg max Bt~ [log P(yt(2"))

~MILAB(t(z')) — LAB((@))]l:

Anish Athalye, Logan Engstrom, Andrew llyas: “Synthesizing Robust Adversarial Examples”,
2017

Code

Implementations / Packages

e Cleverhans

o Implementations of most effective attacks

o Tensorflow based, but compatible with Keras and PyTorch models

o Maintained by authors of most methods (Goodfellow, Carlini, Papernot)
e Foolbox

o Simpler API

o More attacks, although some not effective
e IBM Adversarial Robustness Toolbox

o Implementations of many attack and defense methods

Training Accuracy: 95%
Test Accuracy: 94%
Adversarial Example:

=

COWABUNGA TS

References

e Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

e Christian Szegedy et al: “Intriguing properties of neural networks”, 2013

e lanJ. Goodfellow, Jonathon Shilens: “Explaining and Harnessing Adversarial Examples”,
2014

e Nicholas Carlini: “Towards Evaluating the Robustness of Neural Networks”, 2016

e Anish Athalye, Logan Engstrom, Andrew llyas: “Synthesizing Robust Adversarial Examples”,
2017

e Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to
Adversarial Perturbations against Deep Neural Networks”, 2015

e Alexey Kurakin et al: “Adversarial Attacks and Defences Competition”, 2018

