Attacking Neural Networks

Fooling image classification models with adversarial inputs

Outline

- What is an adversarial input?
- Review of neural networks and gradients
- Attack methods
- Defense methods
- Physical world
- Code

Clever Hans

- Able to perform basic arithmetic, but only when trainer asked the questions
- Learned to read involuntary body language from trainer
- Machine learning models may achieve high accuracy from test set from same distribution of training data
- Models can perform poorly when exposed to data outside that distribution

What is an adversarial input?

 \boldsymbol{x}

"panda"

57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

[I. Goodfellow, J Shlens & C. Szegedy. Explaining and Harnessing Adversarial Examples]

Neural networks and gradients

Neural Networks

- Sequence of matrices (weights) and activation functions
- Input vector fed through the network by taking dot product with weights, and feeding product through activation functions, then repeat for each layer
- Output layer usually a 1 dimensional sigmoid function (range of [0,1]) or n dimension softmax function (sum of dimensions = 1, give probabilities for labels)

Neural Networks

- Training process optimizes weights to minimize **loss function** with **gradient descent**
- Loss function measures how correct a prediction is
- **Gradient descent** move parameters in direction of negative gradient until minimum found
- Gradient vector of partial derivatives
- Weights are moved in direction of gradient of loss function with respect to weights

Raschka, Sebastian. Python Machine Learning

Gradients and Jacobians

• Gradients used to see how loss function changes

• Jacobians used to see how output (softmax or logits) change

when $f:\mathbb{R}^n
ightarrow\mathbb{R},$ then for x in $\mathbb{R}^n,$

$$\mathrm{grad}_x(f):= [rac{\partial f}{\partial x_1}rac{\partial f}{\partial x_2}\dotsrac{\partial f}{\partial x_n}]|_x$$

when $f:\mathbb{R}^n
ightarrow\mathbb{R}^m$, then for x in \mathbb{R}^n ,

$$\mathrm{Jac}_x(f) = egin{bmatrix} rac{\partial f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} & \cdots & rac{\partial f_1}{\partial x_n} \ rac{\partial f_2}{\partial x_1} & rac{\partial f_2}{\partial x_2} & \cdots & rac{\partial f_2}{\partial x_n} \ dots & dots & dots & dots \ rac{\partial f_m}{\partial x_1} & rac{\partial f_m}{\partial x_2} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix} ert_x$$

https://math.stackexchange.com/questions/1519367/difference-between-gradient-and-jacobian

Cross Entropy

$$egin{aligned} H(p,q) &= -\sum_{orall x} p(x) \log(q(x)) \ L &= - \mathbf{y} \cdot \log(\mathbf{\hat{y}}) \end{aligned}$$

$$egin{aligned} L &= -(1 imes log(0.1) + 0 imes \log(0.5) + \dots) \ L &= -log(0.1) pprox 2.303 \end{aligned}$$

https://datascience.stackexchange.com/questions/20296/cross-entropy-loss-explanation

- Common loss function for classification
- Smaller when Prob(y_hat) closer to Prob(y_true)

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

Softmax

- Used to map input to a probability distribution of classes
- Used as output activation function
- Logits input to softmax layer, or non normalized output of final hidden layer

 $\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$

https://en.wikipedia.org/wiki/Softmax_function

- x = [-0.2, 0.3, 0.1]
- F(x) with T = 1: [0.250, 0.413, 0.337]

Image Classification

- Each pixel value of an image is a feature
- For greyscale: Integer values in [0,255]
- RGB: one 8 bit value per channel

https://ml4a.github.io/ml4a/looking_inside_neural_nets/

Convolutional Neural Networks

Image Datasets: MNIST

- Handwritten digits
- 28x28 greyscale images

https://en.wikipedia.org/wiki/MNIST_database

Image Datasets: CIFAR10

- 32x32 RGB images
- 10 classes (vehicles, animals)

airplane		14		X	*	ł	2	-17-		all and a second
automobile				1	-	No.	-		-	-
bird	S	ſ	12	X		4	17		1	1
cat	1	Č4	E.	de		1		A	(W)	-
deer	1	49	×.	RA		Y	Y	1	n	
dog	174	C.	-		1			1	1	The
frog	2	-	-		2 %	0	A.	ST.		5.24
horse	- Mar		A	2	P	170	-3	the	1	N
ship	-		dist:	~	MA		2	10	pi-1	-
truck			1	S.				2 m		deta

https://www.cs.toronto.edu/~kriz/cifar.html

Image Datasets: ImageNet

- 1000 classes
- ImageNet challenge introduced breakthrough in computer vision performance

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke: "Going Deeper with Convolutions", 2014

Attack Methods

Most are gradient-based optimization methods

- Take gradient of loss function with respect to input to find direction to shift pixels
- Multiple optimization methods can be used to minimize perturbation

Notation and symbols

- x original input
- x' adversarial input
- η perturbation
- c or ε constant to reduce perceptibility
- I original label
- I' target label
- **J**₆(**x**', **l**'), loss function (usually cross entropy)
- f() image classifier network, map x -> l

Norms

- L₀ number of non-zero values
- L₂ Euclidean distance
- L_w absolute max

https://en.wikipedia.org/wiki/Norm_(mathematics)

L-BFGS method

- First method proposed (2014)
- L-BFGS second order optimization method, more computationally intensive than gradient descent, but can perform better
- Use line or binary search to find minimal c
 - $\circ \quad \ \ \text{initial c at 1e-5}$
 - double c and run L-BFGS with x as initial guess until find f(x') = l'
 - binary search from 0 to c to find smaller c to reduce perceptibility
- Slower than most methods
- Can find examples with very little perceptibility

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017

Fast Gradient Sign Method

- Second method proposed
- Not targeted
- "One-step" method (no optimization)
- Tries to increase cost with correct label, rather than decrease cost with targeted label
- Often not very successful but was used for famous panda image
- Very fast

 $\eta = \epsilon sign(\nabla_x J_\theta(x, l)),$

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017

Projected Gradient Descent

- aka "Basic Iterative" and "Iterative Least Likely"
- Clip pixels from 0-255
- Least likely class can give very interesting results
- Faster than L-BFGS but creates larger perturbations

$$x_0 = x,$$

$$x_{n+1} = Clip_{x,\xi}\{x_n + \epsilon sign(\nabla_x J(x_n, y))\}.$$

$$\begin{aligned} x_0 &= x, \\ y_{LL} &= \arg\min_y \{ p(y|x) \}, \\ x_{n+1} &= Clip_{x,\epsilon} \{ x_n - \epsilon sign(\nabla_x J(x_n, y_{LL})) \}. \end{aligned}$$

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017

$$J_F(x) = \frac{\partial F(x)}{\partial x} = \left[\frac{\partial F_j(x)}{\partial x_i}\right]_{i \times j}.$$

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017 Jacobian-based Saliency Map Attack (JSMA)

- Saliency map shows each pixel's impact on output when perturbed
- At each iteration, calculate saliency map and perturb pixel with highest saliency by given amount θ
- Repeat until f(x') = I' or x' reaches a given distortion threshold
- Perturbs smaller areas but often in higher amounts

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik: "The Limitations of Deep Learning in Adversarial Settings", 2015

Carlini & Wagner's Attack

- In general most powerful against current defenses
- $g(x + \eta) \langle = 0, \text{ only if } f(x') = |'$
 - o distance/penalty better optimized
 - Z softmax
 - **k** confidence (usually set to 0)
 - difference between prediction and target probability or 0 if predicted target
- η defined directly with range of [0,1] (no more clipping)

$$\min_{\eta} \quad \|\eta\|_p + c \cdot g(x+\eta)$$

s.t.
$$x+\eta \in [0,1]^n,$$

$$g(x') = \max(\max_{i \neq l'} (Z(x')_i) - Z(x')_t, -\kappa),$$

$$\eta = \frac{1}{2} (\tanh(w) + 1) - x$$

$$\min_{w} \|\frac{1}{2}(\tanh(w)+1)\|_2 + c \cdot g(\frac{1}{2}\tanh(w)+1).$$

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017

One-Pixel

- Uses evolutionary algorithm to find adversarials.
 - A candidate solution consists of an xv 0 coordinate and RGB pixel value
 - Initialize 400 candidate solutions (parents) 0
 - Generate 400 candidate solutions for next \cap generation by combining parent positions and color values (children)
 - Children compete with corresponding 0 parents, best are kept for next parent set
 - 100 iterations or early-stop when reaching 0 threshold (given probability of target class)
- Weaker on ImageNet models

$\epsilon_0 = 1$ for modifying only one pixel

min

x'

s.t.

Xiaoyong Yuan, Pan He, Qile

Zhu: "Adversarial Examples:

Attacks and Defenses for

Deep Learning", 2017

True: deer Pred: airplane

Pred: automobile

Pred: doa

True: automobile Pred: bird

True: truck Pred: automobile

Pred: frog https://github.com/Hyperparticle/one-pixel-attack-keras

J(f(x'), l')

 $\|\eta\|_0 \le \epsilon_0,$

Pred: deer

Black-box method

- All previous methods require access to model to get gradient (or at least probabilities)
- Many consumer/commercial ML services don't provide anything except predicted labels
- Can learn a substitute model to approximate decision boundaries in target model
- Jacobian-based augmentation used to synthesize and augment dataset to teach substitute model the target's decision boundary

Black-box method

• Identifies sensitive direction of the model's decision boundary

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik: "Practical Black-Box Attacks against Machine Learning", 2016

Defense Methods

Adversarial Training

- Generate adversarial examples and train network with these
- Can improve robustness against one-step method adversarial inputs and black box attacks, but in general weak against iterative methods
- Can also add regularization to reduce overfitting

Defensive Distillation

- **Distillation** method used to reduce size of DNN architectures by training a smaller model with the probability outputs from larger model as labels
 - knowledge acquired during training also encoded in probability outputs (relative difference between classes)
- **Defensive Distillation** rather than reduce size, we want to increase robustness and smooth decision boundaries
- Increasing temperature increases ambiguity between probabilities
- Train with high temperature, reset to 1 during test time

$$F(X) = \left[\frac{e^{z_i(X)/T}}{\sum_{l=0}^{N-1} e^{z_l(X)/T}}\right]_{i \in 0..N-1}$$

Softmax with temperature parameter

- x = [-0.2, 0.3, 0.1]
- F(x) with T = 1: [0.250, 0.413, 0.337]
- F(x) with T = 100: [0.3324, 0.3341, 0.3335]

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2015

Defensive Distillation

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2015

Defensive Distillation

Adversarial Samples Success Rate (MNIST)
 Adversarial Samples Baseline Rate (MNIST)
 Adversarial Samples Baseline Rate (CIFAR10)
 Adversarial Samples Baseline Rate (CIFAR10)

*JSMA method used for attacks

Distillation Temperature	MNIST Adversarial Samples Success Rate (%)	CIFAR10 Adversarial Samples Success Rate (%)			
1	91	92.78			
2	82.23	87.67			
5	24.67	67			
10	6.78	47.56			
20	1.34	18.23			
30	1.44	13.23			
40	0.45	9.34			
50	1.45	6.23			
100	0.45	5.11			
No distillation	95.89	87.89			

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2015

Adversarial Detecting

- Train secondary neural networks to detect adversarials given input or layer outputs of target model
- Use PCA to detect properties of inputs or network parameters
- Compare distribution with standard statistical methods such as maximum mean discrepancy or kernel density estimation
- **KDE** compare differences of final hidden layer outputs with training instances of same class

$$KDE(x) = \frac{1}{|X_t|} \sum_{s \in X_t} \exp(\frac{|F^{n-1}(x) - F^{n-1}(s)|^2}{\sigma^2})$$

Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017

$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1}).$

Reconstruction/Purification: PixelDefend

- **PixelCNN** generative model that learns conditional probability of a pixel based on all previous pixels
- **PixelDefend** purify image by replacing pixels with expected values within range

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon: "PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples", 2017

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves: "Conditional Image Generation with PixelCNN Decoders", 2016

Attacks in Physical World

Street Signs

- Perturbation must be within bounds of object
- Generation process accounts for physical dynamics (viewing angles)
- Mask used to define object's area
- Sample additional instances of input object from real and synthetic distribution
- NPS non printability score, models printer color reproduction error
 - \circ p hat set of printable colors
 - \circ p' set of colors used in perturbation

$$\operatorname{argmin}_{\delta} \lambda || M_x \cdot \delta ||_p + NPS + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*)$$

$$NPS = \sum_{\hat{p} \in R(\delta)} \prod_{p' \in P} |\hat{p} - p'|$$

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno: "Robust Physical-World Attacks on Deep Learning Models", 2017

Face Recognition

- Targeted attack on facial recognition systems
- Generate perturbation that can be printed and placed on glasses
- TV improve smoothness of generated image

 $softmaxloss(f(x), c_x) = -\log\left(\frac{e^{\langle h_{c_x}, f(x) \rangle}}{\sum_{c=1}^{N} e^{\langle h_c, f(x) \rangle}}\right)$ $TV(r) = \sum_{i,j} \left((r_{i,j} - r_{i+1,j})^2 + (r_{i,j} - r_{i,j+1})^2\right)^{\frac{1}{2}}$ $\arg\min_r \left(\left(\sum_{x \in X} softmaxloss(x+r, c_t)\right) + \kappa_1 \cdot TV(r) + \kappa_2 \cdot NPS(r)\right)$

Sharif, Mahmood & Bhagavatula, Sruti & Bauer, Lujo & Reiter, Michael. (2016). Accessorize to a Crim Real and Stealthy Attacks on State-of-the-Art Face Recognition.

Adversarial Patch

- Generate a "patch" that covers parts of image, can be printed out later to use in physical world
- A(p, x, l, t) application operator applying patch p, to x with location l and translation t
- Optimize with gradient descent

$$\widehat{p} = \arg\max_{p} \mathbb{E}_{x \sim X, t \sim T, l \sim L} \left[\log \Pr(\widehat{y} | A(p, x, l, t)) \right]$$

Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi: "Adversarial Patch", 2017

3D printed adversarial objects

- Generate adversarial texture that can be applied to 3D printed objects
- LAB color space in which numerical differences are proportional to perceptual differences
- **T** set of translation functions

classified as turtle classified as rifle classified as other

$$\arg\max_{x'} \mathbb{E}_{t \sim T} \left[\log P(y_t | t(x')) - \lambda || LAB(t(x')) - LAB(t(x)) ||_2 \right]$$

Anish Athalye, Logan Engstrom, Andrew Ilyas: "Synthesizing Robust Adversarial Examples", 2017

Implementations / Packages

- Cleverhans
 - Implementations of most effective attacks
 - Tensorflow based, but compatible with Keras and PyTorch models
 - Maintained by authors of most methods (Goodfellow, Carlini, Papernot)
- Foolbox
 - Simpler API
 - More attacks, although some not effective
- IBM Adversarial Robustness Toolbox
 - Implementations of many attack and defense methods

Training Accuracy: 95% Test Accuracy: 94% Adversarial Example:

References

- Xiaoyong Yuan, Pan He, Qile Zhu: "Adversarial Examples: Attacks and Defenses for Deep Learning", 2017
- Christian Szegedy et al: "Intriguing properties of neural networks", 2013
- Ian J. Goodfellow, Jonathon Shlens: "Explaining and Harnessing Adversarial Examples", 2014
- Nicholas Carlini: "Towards Evaluating the Robustness of Neural Networks", 2016
- Anish Athalye, Logan Engstrom, Andrew Ilyas: "Synthesizing Robust Adversarial Examples", 2017
- Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2015
- Alexey Kurakin et al: "Adversarial Attacks and Defences Competition", 2018