
Attacking Neural Networks

Fooling image classification models with adversarial inputs

Outline

● What is an adversarial input?

● Review of neural networks and gradients

● Attack methods

● Defense methods

● Physical world

● Code

Clever Hans
● Able to perform basic arithmetic, but

only when trainer asked the questions
● Learned to read involuntary body

language from trainer
● Machine learning models may achieve

high accuracy from test set from same
distribution of training data

● Models can perform poorly when
exposed to data outside that
distribution

What is an adversarial input?

[I. Goodfellow, J Shlens & C. Szegedy. Explaining and Harnessing Adversarial Examples]

Neural networks and gradients

Neural Networks

http://neuralnetworksanddeeplearning.com

● Sequence of matrices (weights)
and activation functions

● Input vector fed through the
network by taking dot product
with weights, and feeding
product through activation
functions, then repeat for each
layer

● Output layer usually a 1
dimensional sigmoid function
(range of [0,1]) or n dimension
softmax function (sum of
dimensions = 1, give probabilities
for labels)

 Matrix dimensions: 6x4 -> 4x3 -> 3x1

https://en.wikipedia.org/wiki/Sigmoid_function

Neural Networks
● Training process optimizes weights to

minimize loss function with gradient descent
● Loss function - measures how correct a

prediction is
● Gradient descent - move parameters in

direction of negative gradient until minimum
found

● Gradient - vector of partial derivatives
● Weights are moved in direction of gradient of

loss function with respect to weights

Raschka, Sebastian. Python Machine Learning

Gradients and Jacobians
● Gradients used to see how loss

function changes
● Jacobians used to see how output

(softmax or logits) change

https://math.stackexchange.com/questions/1519367/difference-between-gradient-and-jacobian

Cross Entropy

● Common loss function for classification

● Smaller when Prob(y_hat) closer to Prob(y_true)

https://datascience.stackexchange.com/questions/20296/cross-entropy-loss-explanation

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

Softmax

● Used to map input to a probability

distribution of classes

● Used as output activation function

● Logits - input to softmax layer, or non

normalized output of final hidden layer

● x = [-0.2, 0.3, 0.1]
● F(x) with T = 1: [0.250, 0.413, 0.337]

https://en.wikipedia.org/wiki/Softmax_function

Image Classification

● Each pixel value of an image is a feature

● For greyscale: Integer values in [0,255]

● RGB: one 8 bit value per channel

https://ml4a.github.io/ml4a/looking_inside_neural_nets/

Convolutional Neural Networks

https://codetolight.files.wordpress.com/

Image Datasets: MNIST

● Handwritten digits

● 28x28 greyscale images

https://en.wikipedia.org/wiki/MNIST_database

Image Datasets: CIFAR10

● 32x32 RGB images

● 10 classes (vehicles, animals)

https://www.cs.toronto.edu/~kriz/cifar.html

Image Datasets: ImageNet

● 1000 classes

● ImageNet challenge introduced

breakthrough in computer vision

performance

https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/

Inception

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke: “Going Deeper with Convolutions”, 2014

Attack Methods

Most are gradient-based optimization methods

● Take gradient of loss function with respect to input to find

direction to shift pixels

● Multiple optimization methods can be used to minimize

perturbation

Notation and symbols

● x - original input

● x' - adversarial input

● η - perturbation

● c or ε - constant to reduce perceptibility

● l - original label

● l' - target label

● Jθ(x', l'), - loss function (usually cross entropy)

● f() - image classifier network, map x -> l

Norms

● L
0

 - number of non-zero values

● L
2

 - Euclidean distance

● L
∞

 - absolute max

https://en.wikipedia.org/wiki/Norm_(mathematics)

L-BFGS method

● First method proposed (2014)

● L-BFGS - second order optimization method,

more computationally intensive than

gradient descent, but can perform better

● Use line or binary search to find minimal c
○ initial c at 1e-5
○ double c and run L-BFGS with x as initial

guess until find f(x') = l'
○ binary search from 0 to c to find smaller c to

reduce perceptibility

● Slower than most methods

● Can find examples with very little

perceptibility

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

Fast Gradient Sign Method

● Second method proposed

● Not targeted

● "One-step" method (no optimization)

● Tries to increase cost with correct label,

rather than decrease cost with targeted label

● Often not very successful but was used for

famous panda image

● Very fast

Xiaoyong Yuan, Pan He, Qile Zhu:
“Adversarial Examples: Attacks and Defenses for Deep Learning”, 2017

Projected Gradient Descent

● aka "Basic Iterative" and "Iterative Least

Likely"

● Clip pixels from 0-255

● Least likely class can give very interesting

results

● Faster than L-BFGS but creates larger

perturbations

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

Jacobian-based Saliency Map Attack (JSMA)

● Saliency map - shows each pixel's impact on

output when perturbed

● At each iteration, calculate saliency map and

perturb pixel with highest saliency by given

amount θ
● Repeat until f(x') = l' or x' reaches a given

distortion threshold

● Perturbs smaller areas but often in higher

amounts

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik: “The Limitations of Deep
Learning in Adversarial Settings”, 2015

Carlini & Wagner's Attack

● In general most powerful against current

defenses

● g(x + 𝜼) - <= 0, only if f(x') = l'
○ distance/penalty better optimized
○ Z - softmax
○ k - confidence (usually set to 0)
○ difference between prediction and target

probability or 0 if predicted target

● 𝜼 - defined directly with range of [0,1] (no

more clipping)

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

One-Pixel

One-Pixel
● Uses evolutionary algorithm to find

adversarials:
○ A candidate solution consists of an xy

coordinate and RGB pixel value
○ Initialize 400 candidate solutions (parents)
○ Generate 400 candidate solutions for next

generation by combining parent positions
and color values (children)

○ Children compete with corresponding
parents, best are kept for next parent set

○ 100 iterations or early-stop when reaching
threshold (given probability of target class)

● Weaker on ImageNet models

Xiaoyong Yuan, Pan He, Qile
Zhu: “Adversarial Examples:
Attacks and Defenses for
Deep Learning”, 2017

https://github.com/Hyperparticle/one-pixel-attack-keras

Black-box method

● All previous methods require access to model to get gradient (or at

least probabilities)

● Many consumer/commercial ML services don't provide anything

except predicted labels

● Can learn a substitute model to approximate decision boundaries in

target model

● Jacobian-based augmentation used to synthesize and augment

dataset to teach substitute model the target's decision boundary

Black-box method

● Identifies sensitive direction of the
model's decision boundary

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik: “Practical Black-Box Attacks against Machine Learning”, 2016

Defense Methods

Adversarial Training

● Generate adversarial examples and train network with these

● Can improve robustness against one-step method adversarial inputs and black box attacks, but in

general weak against iterative methods

● Can also add regularization to reduce overfitting

Defensive Distillation

● Distillation - method used to reduce size of DNN

architectures by training a smaller model with the

probability outputs from larger model as labels
○ knowledge acquired during training also encoded in

probability outputs (relative difference between
classes)

● Defensive Distillation - rather than reduce size, we

want to increase robustness and smooth decision

boundaries

● Increasing temperature increases ambiguity between

probabilities

● Train with high temperature, reset to 1 during test

time

Softmax with temperature parameter

● x = [-0.2, 0.3, 0.1]
● F(x) with T = 1: [0.250, 0.413, 0.337]
● F(x) with T = 100:

[0.3324, 0.3341, 0.3335]

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a
Defense to Adversarial Perturbations against Deep Neural Networks”,
2015

Defensive Distillation

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015

Defensive Distillation
*JSMA method used for attacks

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks”, 2015

Adversarial Detecting

● Train secondary neural networks to detect

adversarials given input or layer outputs of

target model

● Use PCA to detect properties of inputs or

network parameters

● Compare distribution with standard

statistical methods such as maximum mean

discrepancy or kernel density estimation

● KDE - compare differences of final hidden

layer outputs with training instances of same

class

Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep
Learning”, 2017

Reconstruction/Purification: PixelDefend

● PixelCNN - generative model that learns

conditional probability of a pixel based

on all previous pixels

● PixelDefend - purify image by replacing

pixels with expected values within range

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves:
“Conditional Image Generation with PixelCNN Decoders”, 2016

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon: “PixelDefend: Leveraging Generative
Models to Understand and Defend against Adversarial Examples”, 2017

Attacks in Physical World

Street Signs

● Perturbation must be within bounds of object

● Generation process accounts for physical

dynamics (viewing angles)

● Mask used to define object's area

● Sample additional instances of input object

from real and synthetic distribution

● NPS - non printability score, models printer

color reproduction error
○ p hat - set of printable colors
○ p' - set of colors used in perturbation

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno:
“Robust Physical-World Attacks on Deep Learning Models”, 2017

Face Recognition

● Targeted attack on facial recognition

systems

● Generate perturbation that can be printed

and placed on glasses

● TV - improve smoothness of generated

image

Sharif, Mahmood & Bhagavatula, Sruti & Bauer, Lujo & Reiter, Michael. (2016). Accessorize to a Crime:
Real and Stealthy Attacks on State-of-the-Art Face Recognition.

Adversarial Patch

● Generate a "patch" that covers parts of

image, can be printed out later to use in

physical world

● A(p, x, l, t) - application operator applying

patch p, to x with location l and translation t
● Optimize with gradient descent

Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi: “Adversarial Patch”, 2017

3D printed adversarial
 objects

● Generate adversarial texture that can be

applied to 3D printed objects

● LAB - color space in which numerical

differences are proportional to

perceptual differences

● T - set of translation functions

Anish Athalye, Logan Engstrom, Andrew Ilyas: “Synthesizing Robust Adversarial Examples”,
2017

Code

Implementations / Packages

● Cleverhans
○ Implementations of most effective attacks
○ Tensorflow based, but compatible with Keras and PyTorch models
○ Maintained by authors of most methods (Goodfellow, Carlini, Papernot)

● Foolbox
○ Simpler API
○ More attacks, although some not effective

● IBM Adversarial Robustness Toolbox
○ Implementations of many attack and defense methods

References

● Xiaoyong Yuan, Pan He, Qile Zhu: “Adversarial Examples: Attacks and Defenses for Deep

Learning”, 2017

● Christian Szegedy et al: “Intriguing properties of neural networks”, 2013

● Ian J. Goodfellow, Jonathon Shlens: “Explaining and Harnessing Adversarial Examples”,

2014

● Nicholas Carlini: “Towards Evaluating the Robustness of Neural Networks”, 2016

● Anish Athalye, Logan Engstrom, Andrew Ilyas: “Synthesizing Robust Adversarial Examples”,

2017

● Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha: “Distillation as a Defense to

Adversarial Perturbations against Deep Neural Networks”, 2015

● Alexey Kurakin et al: “Adversarial Attacks and Defences Competition”, 2018

