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Health Care Problem

* Chronic diseases: A chronic disease is a human health condition or disease
that is persistent or otherwise long-lasting in its effects or a disease that
comes with time.

e Chronic: the course of the disease lasts for more than 3 months.

* Common chronic diseases include:
e arthritis

Asthma

Cancer

heart failure

diabetes

hepatitis C

HIV/AIDS



Epidemiology

* Chronic diseases constitute a major cause of mortality:
* WHO: 38 million deaths a year to non-communicable diseases
* United States: 25% of adults have at least two chronic conditions
e 1in 2 Americans (133 million) has at least one chronic medical condition
* 61% of all deaths among people older than 65 in the population

* Diabetes:
« 7t leading cause of death in the US

* Leading cause of many complications such as kidney failure, non-traumatic
lower limb amputations, blindness

* Major cause of heart disease



Economic impact

* Chronic diseases constitute a major section of medical care spending:
(direct costs)

* 75% of the $2 trillion spent annually in US medical care (S1.5 trillion)
 Diabetes: S1 in S3 Medicare expenditure

e (indirect costs)
* limitations in daily activities
* loss in productivity
* loss of days of work

* Diabetes: $322 billion per year



Nature of Chronic Diseases
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Natural Disease Progression
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Markov Models
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Markov Models
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Markov Models
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arkov Models
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Markov Models
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Markov Models
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Markov Models
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Markov Chains



Data Implementation
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Data Implementation
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Hidden Markov Models

a23 N = number of states
T = number of observations
0i—1. N = emission parameter for an observation associated with state 2
$i=1...N,j=1..N = probability of transition from state  to state j
i1 N = IN-dimensional vector,

b32 Ti—1..T = (hidden) state at time

Y¢=1...T = observation at time ¢

b33 b34 F(y|6) — probability distribution of an observation, parametrized on 6
Zios. 1 ~ Categorical(s,, )

b24 Yi=1...T ~ F(0,)




Hidden Markov Models - Learning

* The parameter learning task in HMMs: given an output sequence or a
set of such sequences ===> the best set of state transition
probabilities.

* The task is usually to derive the maximum likelihood estimate of the
parameters of the HMM given the set of output sequences

* local maximum likelihood can be derived efficiently using the Baum-—
Welch algorithm



Baum—Welch algorithm
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Baum—Welch algorithm
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