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CT scan segmentation




input image output segmentation map

Why U-net but not normal CNN ?
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U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied
feature maps. The arrows denote the different operations.
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JX3 CONVOLUTION+RELU
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2X2 MAX POOLING
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X2 UP-CONVOLUTION

Zs v
(™ - b,e' .
_ EN resulting feature maps
weights w have factor 2 higher
(.g. 20) resolution
bias ¢
X e\
N
1 features
val output feature map b
(only 1 channel shown)
boz+i,2y+51 = ReLU( Z Wi k! Gzyk+C
i€{0,1}
: j€{0,1}
input feature map a ke{l,--- ,K}
(e.g. 5 channels)




U-NET Al
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BOUNDAI

Y LOSS

The separation border is computed using morphological operations. The
weight map is then computed as

(2)

202

(di(x) + aag(xn'-’f)

w(x) = we(x) +wp - exp (—

- where w, : {2 — R is the weight map to balance the class frequencies, d; : 2 = R
denotes the distance to the border of the nearest cell and d» : 2 — R the distance
~ to the border of the second nearest cell. In our experiments we set wy = 10 and
o = 5 pixels.

Segmentation mask for training Loss weight for each pixel
(inserted background between
touching objects)
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U-NET COMPUTATIONAL EXAMPLES

o

L o A
Input image

Our result: 0.000353 warping error

Glioblastoma-astrocytoma U373 cellsona  Cyan: segmentation by u-net
(New best score af submission march 6th, 2015) | polyacrylimide substrate Yellow borders: our manual ground truth
Sliding-window CNN: 0.000420 ;
Training time: 10h, Application: 1s per image Phase contrast microscopy



preprocessing
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iImg = imgs_to_process|i]
#Standardize the pixel values
mean = np.mean(img)

std = np.std(img)

Img = img-mean

iImg = img/std
plt.hist(img.flatten(),bins=200)
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The underflow peak near -1.5 is the black out-of-scanner part of
the image. The peaks around 0.0 are the background and lung
interior and the wide clumps from 1.0 to 2.0 are the non-lung-
tissue and bone. The structure of this histogram varies
throughout the data set. Two images are shown below that are
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THE HU OF COMMON SUBSTANCES

The Hounsfield scale / havnz fi:ld/ or CT
numbers, named after Sir Godfrey
Newbold Hounsfield, is a guantitative scale

Substance
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-500
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for describing radiodensity.

By comparison, conventional X-ray
Images are two-dimensional projections

CSF

15

Kidney

30

Blood

+30 to +45

Muscle

+10 to +40

Grey matter
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of the true three-dimensional anatomy,
l.e. radiodensity shadows.

White matter

+20 to +30

Liver
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Soft Tissue, Contrast

+100 to +300

Bone

+700 (cancellous bone) to +3000 (cortical bone) @
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IMAGE COORDINATE SYSTEM

= The image coordinate system describes how an image
was acquired with respect to the anatomy. Medical
scanners create regular, rectangular arrays of points
and cells which start at the upper left corner. The i axis
increases to the right, the j axis to the bottom and

the kaxis backwards.

In addition to the intensity value of each voxel (ij k) the
origin and spacing of the anatomical coordinates are
stored too.

The origin represents the position of the first voxel
(0,0,0) in the anatomical coordinate system, e.q.
(100mm, 50mm, -25mm)

The spacing specifies the distance between voxels
along each axis, e.g. (1.5mm, 0.5mm, 0.5mm)

The right 2D example shows the meaning of origin and
spacing:
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IMAGE TRANSFORMATION

The transformation from an image space vector [:t' 7 k)" to an anatomical space vector Z is an affine transformation, consists of a linear transformation A followed by a translation £.
— . . ! ry
t=A(i j k) +t

The transformation matrix A is a3 x 3 matrix and carries all information about space directions and axis scaling.

—

t isa3 x 1 vector and contains information about the geometric position of the first voxel.

1 A A Ajgg i t
xy | = | Aoy Asx Apg VI Bl IR %
T3 Az Az Ajsg k ts

The last equation shows that the linear transformation is performed by a matrix multiplication and the translation by a vector addition. To represent both, the transformation and the
translation, by a matrix multiplication an augmented matrix must be used. This technique requires that the matrix A is augmented with an extra row of zeros at the bottom, an extra
column-the translation vector-to the right, and a "1" in the lower right corner. Additionally all vectors have to be written as homogeneous coordinates, which means thata '1' is
augmented at the end.

T Ay Ap A ot i
T2 | _ | An Az Ax; B J
T3 Az Az Aazz ta k

1 0 0 0 1 1

Depending on the used anatomical space (LPS or RAS) the 4 x 4 matrix is called IJKtoLPS- or IJKtoRAS-matrix, because it represents the transformation from IJK to LPS or RAS.
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2D EXAMPLE OR CALCULATING AN J/70LS
MATRIX

= The following figure shows the anatomical space with a L(P)S basis on the left and
the corresponding image coordinates on the right.
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The origin (the coordinates of the first 'pixel’ in anatomical space) is (50 mm, 300 mm) and
the spacing (the distance between two pixels) is (50 mm, 50 mm). @



The origin (the coordinates of the first 'pixel' in anatomical space) is (50 mm, 300 mm) Thus, at least six equations can be derived:
and the spacing (the distance between two pixels) is (50 mm, 50 mm).
pacing { Prels) s ( ) 50 = Ay -0+ App -0+, - 1

300 =As -0+ Ags -0+ 15 - 1

As this is a 2D example A isa 2 » 2 matrix and t a2 x 1 vector. Therefore the
equation of the affine transformation is:

L A A 4 i 1[]D=A11-1+A12-[}—|—f;1-1
S|1=141 An t J 300=Ag; 14+ A3 - 04151
1 0 0 1 1
5021‘111 ‘U—Fﬂlg 'l-l‘-tl -1
By multiplying the IJtoLS-matrix and the vector of the right side, the following product will
be obtained: 260 = Aoy -0+ An-1+185-1
R L s '("'3_ As mentioned above, the translation ¢ contains the information about the geometric
i RITTT? J position of the first pixel and is therefore equivalent to the origin. This result is also
[ i‘r‘ij*___K confirmed by the first equations.
A A (A1l i+ A j+1tq-1 : . ) -
A 1 1 Aoy i+ Asn - j+12-1 The solution of the other equations leads to the following IJtoLS-matrix:
A Az 12 Agy-i+ A - 2 -
0 0 1 \ 0-i+0-j+1-1 50 0 50
The last equation and the matrix product show that a total of 6 unknown variables IJtoLS = 0 —50 300
(A1, Aya, Aoy, Asa, t1,t2) have to be determined. The knowledge of origin and 0 0 1

spacing however allows the following relations between image and anatomical space: ) ) ) )

I ) 50 In the event that a R(A)S basis was used, just the left and anterior axis of the anatomical
1

(S) B (:) (am)

= 0 100 = 1 50 = 0 space are flipped, and the image coordinate system appears in the same way as in the
=\o 300/~ \o 250 ) — \ 1 p pped, ag Y pPp ¥
L(P)S case.
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DATA PREPROCESSING: CODES

= Python: 3D lungs construction and nodules generation
= Open jupyter notebook
= R: introduction of medical image processing




PROJECT SCHEME PART I

= We will train a network to segment out potentially cancerous nodules and then use
the characteristics of that segmentation to make predictions about the diagnosis of
the scanned patient within a 12 month time frame.

1. Thresholding
Prepare train and 2. Erosion and extract three
test datasets with translate the voxel dilation transverse slices
preprocessing poition to the world 3. Cutting non- that contain the

methods and GPU coordinate system. ROI Regions largest nodule
resources and cnn change the region 4. Apply ROI from each patient
package mask scan

output will be two files for each patient scan:
a set of images and a set of corresponding nodule masks. @



ROI REGION AND MASK APPLIED




test case 13 -- three slices
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 An example segmentation
is given here for the three
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slices taken from a patient
scan. The perfect circle is
the "true" node mask from P e

the LUNA annotationc.csv 0 0
file, and the red is the

predicted node region
from the segmenter. The

200 200

original image is given in
the top right. &
500 500

slice +0 image for slice +0
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PROJECT SCHEME PART II

Load u-net
segmenter based
on loss function
and load best
weight

Training the
segmenter: Predict with

imgs_train, imags_test
imgs_mask_train

= Here, imgs_train is the original images after resize, rescale and change the
region.

= And the imgs_mask_train are the imgs generated by extract three
transverse slices that contain the largest nodule from each patient scan

e



IMPROVEMENT OF U-NET Pk

EDICTION

= There are many ways we can improve the U-net model.
= ].increase datasets:
Larger dataset can give us better u-net model
2. add more mask images to input dataset
But this will need a lot of more time.
3. change the scheme of finding and create mask

Which can be improved based on many medical reports




OLD VERSION CLASSIFIER BASED ON
FEATURES

= As we can always make classification based on features of pictures.

= For this problem we can create a lot of features and use cancer label to make
classification models.

= Features like bellow:

= avgArea = totalArea / numNodes

= weightedX = weightedX / totalArea
= weightedY = weightedY / totalArea

= numNodesperSlice = numNodes*1. / nslices




RANDOM FOREST AND XG

Random Forest

BOOST

precision recall fl-score support

No Cancer @.81 @.98 ®.89 463

Cancer @.17 @.82 0.83 187

ovg / total @.69 @.80 0.73 578
{"logloss’, B.5260033267@816652)

XGBoost

precision recall fl-score support

No Cancer @.83 @&.86 .84 463

Cancer @.27 ®.21 0.24 187

ovg / total .72 @.74 0.73 578

{"logloss', B.570@685138621493)
Predicting all positiwve

precision recall fl-score support

No Cancer 2.0 .28 Q.08 463
Cancer @.19 1.20 8.32 187

avg / total 0.84 @.19 ©.86 578

{"logloss’, 28.@55831@25357818)
Predicting all negatiwve

precision recall fl-score support

No Cancer .81 1.26 @.96 463
Cancer 9.00 2.2 0.0 187

avg / total @.66 @.81 ®.73 578

{"logloss’, 6.4835948671148B85)




RESOURCES

= 1. https://www.kaggle.com/c/data-science-bowl-2017#tutorial

= 2. https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

= 3. https://www.kaggle.com/c/ultrasound-nerve-segmentation/forums/t/21358/0-
57-deep-learning-keras-tutorial

= 4_https://lunal6.grand-challenge.org/



https://www.kaggle.com/c/data-science-bowl-2017
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://www.kaggle.com/c/ultrasound-nerve-segmentation/forums/t/21358/0-57-deep-learning-keras-tutorial
https://www.kaggle.com/c/ultrasound-nerve-segmentation/forums/t/21358/0-57-deep-learning-keras-tutorial
https://luna16.grand-challenge.org/

THANK YOU!
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