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Abstract

* Deep learning becomes increasingly important
* Automatic Machine Translation
* Object Classification in Photographs
* Image Caption Generation
* Automatic Game Playing (AlphaGO)



Qutline

* Introduction of Neural Network
* Introduction of popular Deep Learning Libraries

* Introduction of Deep Neural Network
* Convolutional Neural Network
* Auto-encoder

* Implementation of several Deep models
 Convolutional Neural Network via Tensorflow
 Auto-encoder via Matlab

* Applications of Deep models in ImageNet (AlexNet)



Introduction of Neural Network

* Basic Architecture
* Linear Classifier

* Transfer Function
* Gradient Descent



Popular Deep Learning Libraries

* Theano

* DeeplearnToolbox
* MatConvNet

* Caffe

* Tensorflow

* Keras



Theano

* \What is Theano?

* Symbolic computation library
* CPU and GPU infrastructure
* Optimized compiler

* Theano introduction, installation guides, tutorials, and documents
* http://deeplearning.net/software/theano/index.html

* GitHub Page
* https://github.com/Theano/Theano



http://deeplearning.net/software/theano/index.html
https://github.com/Theano/Theano

DeeplearnToolbox

* DeeplearnToolbox

* A open-source Matlab toolbox for Deep Learning
 Download in: https://github.com/rasmusbergpalm/DeeplearnToolbox

* Advantage
* Matlab, easy to use
* Open-source

* Disadvantage
* Only CPU version, slow


https://github.com/rasmusbergpalm/DeepLearnToolbox

MatConvNet

* MatConvNet

* A open-source Matlab toolbox for Convolution Network
 Download in: https://github.com/vlfeat/matconvnet

* Advantage

* Matlab, easy to use
* Pretrained models(VGG, AlexNet)

* Support GPU

* Disadvantage
* Complicated than DeeplearnToolbox
* Support only Convolution Network



https://github.com/vlfeat/matconvnet

Caffe

* \What is Caffe?

* Open source deep learning framework maintained by Berkeley Vision and
Learning Center (BVLC)

* Mainly written in C++ and CUDA C with Python and Matlab interfaces
* Why Using Cafte?

* Open source

* Reliability, especially for large scale problem
* Speed

* Popularity



Caffe

* Official website (http://cafte.berkeleyvision.org)
* Download from the GitHub page (https://github.com/BVLC/caftfe)

* Try the tutorials and reference models
(http://caffe.berkeleyvision.org/tutorial/)

* Look through the detailed APl documentations
(http://caffe.berkeleyvision.org/doxygen/annotated.htmil)



http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
http://caffe.berkeleyvision.org/tutorial/
http://caffe.berkeleyvision.org/doxygen/annotated.html

Tensortlow

* \What Is Tensorflow?

* Open source software library for numerical computation using data flow
graphs.

* Mainly written in C++, and defined handy new compositions of operators
as writing a Python function.
* Why using Tensortlow?

* Flexible architecture allows computation to one or more CPUs or GPUs In
a desktop, server, or mobile device with a single API.



Tensortlow

* Official website: https://www.tensorflow.org/

* Tutorials: https://www.tensorflow.org/tutorials/
* GitHub page: https://github.com/tensorflow/tensorflow

* Recommended installation and Python coding IDE:
* Anaconda: https://anaconda.org/
* Jupyter Notebook (IDE): http://jupyter.org/



https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/
https://github.com/tensorflow/tensorflow
https://anaconda.org/
http://jupyter.org/

Keras

* \What Is Keras?

* Keras Is a high-level neural networks library, written in Python and
capable of running on top of either Tensorflow and Theano

* Why using Keras?
* Allows for easy and fast prototyping.
* Supports both CNN and RNN, as well as combinations of the two.
* Supports arbitrary connectivity schemes.
* Runs seamlessly on CPU and GPU.



Keras

* Official website: https://keras.io/
* GitHub page: https://github.com/fchollet/keras



https://keras.io/
https://github.com/fchollet/keras

Introduction of Deep Neural Network

* Convolutional Neural Network (CNN)
 Auto-encoder



Convolutional Neural Network (CNN)

Example: 1000x1000 image
1M hidden units
‘ 10°12 parameters!!!

* Problem of fully connected NN:

* The number of weights grows
largely with the size of the input === =
image —r O

* Pixels in distance are less r= 4
correlated

Ranzato CVPR’13



Convolutional Neural Network (CNN)

* Locally connected NN:

* Sparse connectivity: a hidden unit Is
only connected to a local patch
(welghts connected to the patch are
called filter or kernel)

* The learned filter Is a spatially local
pattern

Example: 1000x1000 image
IM hidden units

Filter size: 10x10
100M parameters

Ranzat o CVPR'13



Convolutional Neural Network (CNN)

* Shared weights:

* Hidden nodes at
different locations share
the same weights.

* |t greatly reduces the
number of parameters
to learn.

layer m éaimgreﬁ i’
layer m-| O O O O O

Weights with the same color have
identical values



Convolutional Neural Network (CNN)

 Convolution:

* Computing the responses at hidden nodes Is equivalent to convoluting
the input Image x with a learned filter w

* After convolution, a filter map net is generated at the hidden layer:

netli,j] = (X « W)[i,j] = EZX[m,n] W[i —m,j —n]
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Convolutional Neural Network (CNN)

* Zero-padding (optional):
* The valid feature map Is smaller than the input after convolution

* Implementation of neural networks needs to zero-pad the input x to
make It wider



Convolutional Neural Network (CNN)

* Downsampled convolutional layer (optional):

* To reduce computational cost, we may want to skip some positions of the
filter and sample only every s pixels in each direction.

* A downsampled convolution function is defined as:
netl|i,jl = (X «W)[i Xs,j X s]

Where s Is referred as the stride of this downsampled convolution.



Convolutional Neural Network (CNN)

* Multiple filters:

* Multiple filters generate
multiple feature maps

* Detect the spatial
distributions of multiple
visual patterns

Ranzato CVPR’13



Convolutional Neural Network (CNN)

 Multiple filters: net = Y.X_, X* « Wk

output feature map

/

/

/

output feature maps

W/

Ranzato CVPR'13



Convolutional Neural Network (CNN)

111 :1
Convolutional
Layer
IlI III

input feature maps output feature maps

Ranzato CVPR’13



Convolutional Neural Network (CNN)

* Local contrast normalization Layeri Layeri+1

* Normalization can be done
within a neighborhood along
both spatial and feature
dimensions:

hi,x,y,k e mi,N(x,y,k)

hi+ 1Ak ke
Oi N(x,y,k)



Convolutional Neural Network (CNN)

* Pooling

* Max-pooling outputs the maximum /
value for each sub-region

* The number of output maps Is the

same as Input, but the resolution Is
reduced

* Reduce the computational complexity
for upper layers

* Average pooling can also be applied

Ranzato CVPR'13




Convolutional Neural Network (CNN)

* Typical architecture of One stage (zoom)
CNN

| —»{ Convol. ! LCN i Pooling i—
* Convolutional layer
Increases the number of

feature maps

Whole system

: Lt Class
* Pooling layer decreases g | . | _[Fully Conn. |z
: : r
spatial resolution d
 |CN and pOOling dare Uil 2 stage 3" stage
: After a few stages, residual spatial resolution is very small.
Optlonal at eaCh Stage We have learned a descriptor for the whole image. Ranzato CVPR’13



Convolutional Neural Network (CNN)

* Backpropagation on Convolution Neural Network
aJ

* Calculate sensitivity (back propagate errors) 6 = i and update

weights In the convolutional layer and pooling layer

* Calculating sensitivity in the convolutional layer is the same as multilayer
neural network



Convolutional Neural Network (CNN)

* Calculate sensitivities In the pooling layer

* The input of a pooling layer [ is the output feature map y' of the
previous convolutional layer. The output x'*1 of the pooling layer is the
input of the next convolutional layer [ + 1

* For max pooling, the sensitivity Is propagated according to the
corresponding indices bullt during max operation

* |[f pooling regions are overlapped and one node In the input layer
corresponds to multiple nodes In the output layer, the sensitivities are
added

* Average pooling



CNN Implementation via Tensorflow

* Model Architecture

Lo B S %of
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CNN Implementation via Tensorflow

* Conv-Pooling-LRN structure implementation

with tf.variable_scope('convl') as scope: with tf.variable_scope('conv2') as scope:

kernel = _variable_with_weight_decay('weights', kernel = _variable_with_weight_decay( 'weights"',

=[5, 5, 3, 841, =[5, 5, 64, 641,
=5e-2, =5Se-2,
=0.8) =9.8)

conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], ='SAME") conv = tf.nn.conv2d(nerml, kernel, [1, 1, 1, 1], = 'SAME")

biases = _variable_on_cpu('biases', [64], tf.constant_initializer({@.@)) biases = _variable_on_cpu('biases', [64], tf.constant_initializer(@.1))

pre_activation = tf.nn.bias_add{conv, biases) pre_activation = tf.nn.bias_add(conv, biases)

convl = tf.nn.relu(pre_activation, =scope.name) conv? = tf.nn.relu(pre_activation, =scope.name)

_activation_summary(convl) activation_summary(conv2)
pooll = tF.nn.max_pool (convl, =[1, 3, 3, 11, =[i, 2, 2, 1], norm2 = tf.nn.lrniconv?, 4, =1.8, =8.881 / 5.8, =8.75,

= "SAME", ='pooll') = "norm2")
norml = tf.nn.lrn{pooll, 4, =1.8, =@.881 9.8, =8.75, pool2 = tf.nn.max_pool(norm2, =[1, 3, 3, 11,
="norml’) =[1, 2, 2, 11, = 'SAME", ='poel?’)



CNN Implementation via Tensorflow

* Fully-connected layer with rectified linear activation
* Linear transformation to produce logits

with tf.variable_scope('local3') as scope:
with tf.wvariable_scope('softmax_linear') as scope:

weights = _wvariable_with_weight_decay( 'weights', [192, NUM_CLASSES],

reshape = tf.reshape(pool?, [FLAGS.batch_size, -171)
dim = reshape.get_shape()[1].value =1/152.8, =0.8)
weights = variable with_weight decay('weights', -[dim, 3847, biases = _variable on_cpu('biases’, [NUM_CLASSES],

-3.04, -3.004) tf.constant_initializer(@.8))
biases = variable on_cpu('biases', [384], tf.constant initializer(@.1)) softmax_linear = tf.add(tf.matmul({locald, weights), biases, =sCope.name)
locald = tf.nn.relu(tf.matmul(reshape, weights) + biases, =zcope.name) _activation_summary(softmax_linear)
_activation_summary(local3)

return softmax_linear
with tf.variable_scope('locald’) as scope:
welghts = _wvarilable_with_weight_decay( 'welghts"', =[384, 192],

=0.04, wd=0.004)
biases = _warilable_on_cpu('blases', [122], tf.constant_initializer(@.1))
locald = tf.an.reluftf.matmul{local3, weights) + biases, =sCope.name)

_activation_summary(locald)



CNN Implementation via Tensorflow

def los={logits, labels):

’ ObJeCtlve fu nCtlon. "rridd LZloss to all the trainable variables.
® CrOSS entropy |OSS &4dd summary for "Loss™ and "Loss/avg".

Args:
Y || 'glr1 (j 3/ logits: Logits from inferencel)
a Wel t eca terms labels: Labels from distorted_inputs or inputs(). 1-D tensor

of shape [batch_size]

Returns:

Loss tensor of type fleoat.

labels = tf.casti(labels, tFf.inte4)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(

=labels, =logits, ='cross_entropy_per_sxample')
cross_entropy_mean = tf.reduce_mean{cross_entropy, ='cross_entropy')

tf.add_to_collection('losses', cross_entropy_mean)

return tf.add_ni{tf.get_collection('losses'), ="total_loss"')



# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch # NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
tf.train.exponential_decay(INITIAL_LEARMIMNG_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)

tf.summary.scalar('learning_rate', 1r)

# Generate moving averages of all losses and associated summaries.

loss_averages_op = _add_loss_summaries(total_loss)

# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer{lr)

grads = opt.compute_gradients(total_loss)

# Apply gradients.
apply_gradient_op = opt.apply_gradients{grads, global_step=global_step)

# Add histograms for trainable variables.
for wvar in tf.trainable_variables():

tf.summary.histogram{var.op.name, var)

# Add histograms for gradients.
for grad, var in grads:

if grad is not Mone:

tf.summary.histogram{var.op.name + 'Jgradients', grad)

# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingfdverage(
MOVING_AVERAGE_DECAY, global_step)

variables_averages_op = variable_averages.apply(tf.trainable_variables())

with tf.control_dependencies([apply_gradient_op, variables_averages_op]l):

train_op = tf.no_opi{name="train')

return train_op




CNN Implementation via Tensorflow

* Train the deep model via CPU
Implementation

* Code GitHub resource:
https://github.com/tensorflow/m

odels/tree/master/tutorials/imag

e/cifarl0

de

f train():
"""Train CIFAR-18 for a number of steps."""
with tf.Graph().as_default():

global_step = tf.contrib.framework.get_or_create_global_stepi)

images, labels = cifarl@.distorted_inputs()


https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10

Auto-encoder

* SO far, we have described the application of neural networks to
supervised learning, in which we have labeled training examples.

* Now suppose we have only a set of unlabeled training examples.

* An autoencoder neural network Is an unsupervised learning
algorithm that applies backpropagation, setting the target values
to be equal to the inputs:

y® = x®



Auto-encoder Implementation via Matlab

Encoder Decoder
Input (ool Output
FO ' W FO 1 w
784 b [~ b [~ 784
100 784

* Classity MNIST Dataset
* 9 digits (0~9)
* Input size: 28 X 28 = 784
* Encoder size: 100
* Decoder size: 784
* Qutput size: 784




Auto-encoder Implementation via Matlab

* You can see that the features learned by ‘-.
the autoencoder represent curls and
stroke patterns from the digit images ‘..---
* These features are, not surprisingly,
useful for such tasks as object ‘-!--
recognition and other vision tasks. ‘--..!
HREEA




image Classification Application

* Applications of Deep models in ImageNet Challenge

* Introduction of ImageNet
* Introduction of AlexNet model (Krizhevsky 2012)
* Introduction of other different CNN structures (optional)



iImage Classification Application
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http://www.image-net.org/

image Classification Application

* CNN for object recognition on ImageNet challenge
* Krizhevsky, Sutskever, and Hinton, NIPS 2012

* Trained on ImageNet with two GPU. 2GB RAM on each GPU. 5GB of
system memory

* The first time deep model is shown to be effective on large scale
computer vision task.

* Training lasts for one week



iImage Classification Application

* Model architecture-AlexNet Krizhevsky 2012
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Image Classification Application

* Model architecture-AlexNet Krizhevsky 2012
* 5 convolutional layers and 2 fully connected layers for learning features.

* Max-pooling layers follow first, second, and fifth convolutional layers

* The number of neurons in each layer is given by 253440, 186624, 64896,
64896, 43264, 4096, 4096, 1000

* 650000 neurons, 60000000 parameters, and 630000000 connections




f(x) = tanh(x) f(x) = max(0, x)

T A

Very bad (slow to train) Very good (quick to train)




image Classification Application

* Reducing Overfitting
* What is overfitting?

* Useful Methods

* Data augmentation
* Dropout



iImage Classification Application

* Data augmentation

* The neural net has 60M real-valued parameters and
650,000 neurons

* [t overfits a lot. 224 x 224 image regions are
randomly extracted from 256 images, and also their
horizontal reflections




iImage Classification Application

Dropout

* Dropout
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image Classification Application

* Stochastic Gradient Descent Learning
* Momentum Update

dL
Ul'_|_1 = O.9Ui o OOOOSEWL = E<% |Wi>
D;
Wity =W+ Viyq

Where 0.9 is momentum (damping parameter), 0.0005ew; is weight decay,

€ Is learning rate (initialized with 0.01), and E<§_VLV IWi> Is gradient of loss
D;

w.r.t weight averaged over batches (batch size:128)



Image Classification Application

* Achleves top-1 and top-5 test set Sparse coding [2] | 47.1% | 28.2%
error rates of 37.5% and 17.0% SIFT + FVs [24] | 45.7% | 25.7%
* The best performance achieved CNN 37.5% | 17.0%

during the ILSVRC-2010 ,
3 ¢ 0 0 Table 1: Comparison of results on ILSVRC-
competition was 47.1% and 28.2% o
2010 test set. In italics are best results

* Shows the outperformance of achieved by others.
deep learning to traditional
methods




iImage Classification Application

* 96 learned low-level filters




iImage Classification Application

e Classification result

* The correct label I1s written
under each image, and the
probability assigned to the

correct label Is also shown with
a red bar

mlfe

motor scooter

mite
black widow

cockroach
tick

container ship

lifeboat
amphibian

fireboat

drilling platform

motor scooter
go-kart
moped
bumper car
golfcart

erry

fire engine

dead-man's-fingers

o
agaric dalmatian squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
howler monkey

currant




iImage Classification Application

* Top hidden layer can be used as feature for retrieval
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image Classification Application

* Other different CNN structures for image classification
* Clarifal
* Overfeat
* VGG
* Deeplmage of Baidu
* Network-in-network
* GoogleNet
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Thank you!



