INtroa

Jction of

_earning

Xinxiang Zhang
2/16/2017

eep

Abstract

* Deep learning becomes increasingly important
* Automatic Machine Translation
* Object Classification in Photographs
* Image Caption Generation
* Automatic Game Playing (AlphaGO)

Qutline

* Introduction of Neural Network
* Introduction of popular Deep Learning Libraries

* Introduction of Deep Neural Network
* Convolutional Neural Network
* Auto-encoder

* Implementation of several Deep models
 Convolutional Neural Network via Tensorflow
 Auto-encoder via Matlab

* Applications of Deep models in ImageNet (AlexNet)

Introduction of Neural Network

* Basic Architecture
* Linear Classifier

* Transfer Function
* Gradient Descent

Popular Deep Learning Libraries

* Theano

* DeeplearnToolbox
* MatConvNet

* Caffe

* Tensorflow

* Keras

Theano

* \What is Theano?

* Symbolic computation library
* CPU and GPU infrastructure
* Optimized compiler

* Theano introduction, installation guides, tutorials, and documents
* http://deeplearning.net/software/theano/index.html

* GitHub Page
* https://github.com/Theano/Theano

http://deeplearning.net/software/theano/index.html
https://github.com/Theano/Theano

DeeplearnToolbox

* DeeplearnToolbox

* A open-source Matlab toolbox for Deep Learning
 Download in: https://github.com/rasmusbergpalm/DeeplearnToolbox

* Advantage
* Matlab, easy to use
* Open-source

* Disadvantage
* Only CPU version, slow

https://github.com/rasmusbergpalm/DeepLearnToolbox

MatConvNet

* MatConvNet

* A open-source Matlab toolbox for Convolution Network
 Download in: https://github.com/vlfeat/matconvnet

* Advantage

* Matlab, easy to use
* Pretrained models(VGG, AlexNet)

* Support GPU

* Disadvantage
* Complicated than DeeplearnToolbox
* Support only Convolution Network

https://github.com/vlfeat/matconvnet

Caffe

* \What is Caffe?

* Open source deep learning framework maintained by Berkeley Vision and
Learning Center (BVLC)

* Mainly written in C++ and CUDA C with Python and Matlab interfaces
* Why Using Cafte?

* Open source

* Reliability, especially for large scale problem
* Speed

* Popularity

Caffe

* Official website (http://cafte.berkeleyvision.org)
* Download from the GitHub page (https://github.com/BVLC/caftfe)

* Try the tutorials and reference models
(http://caffe.berkeleyvision.org/tutorial/)

* Look through the detailed APl documentations
(http://caffe.berkeleyvision.org/doxygen/annotated.htmil)

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
http://caffe.berkeleyvision.org/tutorial/
http://caffe.berkeleyvision.org/doxygen/annotated.html

Tensortlow

* \What Is Tensorflow?

* Open source software library for numerical computation using data flow
graphs.

* Mainly written in C++, and defined handy new compositions of operators
as writing a Python function.
* Why using Tensortlow?

* Flexible architecture allows computation to one or more CPUs or GPUs In
a desktop, server, or mobile device with a single API.

Tensortlow

* Official website: https://www.tensorflow.org/

* Tutorials: https://www.tensorflow.org/tutorials/
* GitHub page: https://github.com/tensorflow/tensorflow

* Recommended installation and Python coding IDE:
* Anaconda: https://anaconda.org/
* Jupyter Notebook (IDE): http://jupyter.org/

https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/
https://github.com/tensorflow/tensorflow
https://anaconda.org/
http://jupyter.org/

Keras

* \What Is Keras?

* Keras Is a high-level neural networks library, written in Python and
capable of running on top of either Tensorflow and Theano

* Why using Keras?
* Allows for easy and fast prototyping.
* Supports both CNN and RNN, as well as combinations of the two.
* Supports arbitrary connectivity schemes.
* Runs seamlessly on CPU and GPU.

Keras

* Official website: https://keras.io/
* GitHub page: https://github.com/fchollet/keras

https://keras.io/
https://github.com/fchollet/keras

Introduction of Deep Neural Network

* Convolutional Neural Network (CNN)
 Auto-encoder

Convolutional Neural Network (CNN)

Example: 1000x1000 image
1M hidden units
‘ 10°12 parameters!!!

* Problem of fully connected NN:

* The number of weights grows
largely with the size of the input === =
image —r O

* Pixels in distance are less r= 4
correlated

Ranzato CVPR’13

Convolutional Neural Network (CNN)

* Locally connected NN:

* Sparse connectivity: a hidden unit Is
only connected to a local patch
(welghts connected to the patch are
called filter or kernel)

* The learned filter Is a spatially local
pattern

Example: 1000x1000 image
IM hidden units

Filter size: 10x10
100M parameters

Ranzat o CVPR'13

Convolutional Neural Network (CNN)

* Shared weights:

* Hidden nodes at
different locations share
the same weights.

* |t greatly reduces the
number of parameters
to learn.

layer m éaimgreﬁ i’
layer m-| O O O O O

Weights with the same color have
identical values

Convolutional Neural Network (CNN)

 Convolution:

* Computing the responses at hidden nodes Is equivalent to convoluting
the input Image x with a learned filter w

* After convolution, a filter map net is generated at the hidden layer:

netli,j] = (X « W)[i,j] = EZX[m,n] W[i —m,j —n]

A5 8F 8 ¥ B G A0 S A
671 [F E5 05 W 209 3V 66 5 57 &F
YT ZVZ7Z 77777
Y T B T A
N TNL L T2

Convolutional Neural Network (CNN)

* Zero-padding (optional):
* The valid feature map Is smaller than the input after convolution

* Implementation of neural networks needs to zero-pad the input x to
make It wider

Convolutional Neural Network (CNN)

* Downsampled convolutional layer (optional):

* To reduce computational cost, we may want to skip some positions of the
filter and sample only every s pixels in each direction.

* A downsampled convolution function is defined as:
netl|i,jl = (X «W)[i Xs,j X s]

Where s Is referred as the stride of this downsampled convolution.

Convolutional Neural Network (CNN)

* Multiple filters:

* Multiple filters generate
multiple feature maps

* Detect the spatial
distributions of multiple
visual patterns

Ranzato CVPR’13

Convolutional Neural Network (CNN)

 Multiple filters: net = Y.X_, X* « Wk

output feature map

/

/

/

output feature maps

W/

Ranzato CVPR'13

Convolutional Neural Network (CNN)

111 :1
Convolutional
Layer
IlI III

input feature maps output feature maps

Ranzato CVPR’13

Convolutional Neural Network (CNN)

* Local contrast normalization Layeri Layeri+1

* Normalization can be done
within a neighborhood along
both spatial and feature
dimensions:

hi,x,y,k e mi,N(x,y,k)

hi+ 1Ak ke
Oi N(x,y,k)

Convolutional Neural Network (CNN)

* Pooling

* Max-pooling outputs the maximum /
value for each sub-region

* The number of output maps Is the

same as Input, but the resolution Is
reduced

* Reduce the computational complexity
for upper layers

* Average pooling can also be applied

Ranzato CVPR'13

Convolutional Neural Network (CNN)

* Typical architecture of One stage (zoom)
CNN

| —»{ Convol. ! LCN i Pooling i—
* Convolutional layer
Increases the number of

feature maps

Whole system

: Lt Class
* Pooling layer decreases g | . | _[Fully Conn. |z
: : r
spatial resolution d
 |CN and pOOling dare Uil 2 stage 3" stage
: After a few stages, residual spatial resolution is very small.
Optlonal at eaCh Stage We have learned a descriptor for the whole image. Ranzato CVPR’13

Convolutional Neural Network (CNN)

* Backpropagation on Convolution Neural Network
aJ

* Calculate sensitivity (back propagate errors) 6 = i and update

weights In the convolutional layer and pooling layer

* Calculating sensitivity in the convolutional layer is the same as multilayer
neural network

Convolutional Neural Network (CNN)

* Calculate sensitivities In the pooling layer

* The input of a pooling layer [is the output feature map y' of the
previous convolutional layer. The output x'*1 of the pooling layer is the
input of the next convolutional layer [+ 1

* For max pooling, the sensitivity Is propagated according to the
corresponding indices bullt during max operation

* |[f pooling regions are overlapped and one node In the input layer
corresponds to multiple nodes In the output layer, the sensitivities are
added

* Average pooling

CNN Implementation via Tensorflow

* Model Architecture

Lo B S %of

| ouput | o | oo | s |

CNN Implementation via Tensorflow

* Conv-Pooling-LRN structure implementation

with tf.variable_scope('convl') as scope: with tf.variable_scope('conv2') as scope:

kernel = _variable_with_weight_decay('weights', kernel = _variable_with_weight_decay('weights"',

=[5, 5, 3, 841, =[5, 5, 64, 641,
=5e-2, =5Se-2,
=0.8) =9.8)

conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], ='SAME") conv = tf.nn.conv2d(nerml, kernel, [1, 1, 1, 1], = 'SAME")

biases = _variable_on_cpu('biases', [64], tf.constant_initializer({@.@)) biases = _variable_on_cpu('biases', [64], tf.constant_initializer(@.1))

pre_activation = tf.nn.bias_add{conv, biases) pre_activation = tf.nn.bias_add(conv, biases)

convl = tf.nn.relu(pre_activation, =scope.name) conv? = tf.nn.relu(pre_activation, =scope.name)

_activation_summary(convl) activation_summary(conv2)
pooll = tF.nn.max_pool (convl, =[1, 3, 3, 11, =[i, 2, 2, 1], norm2 = tf.nn.lrniconv?, 4, =1.8, =8.881 / 5.8, =8.75,

= "SAME", ='pooll') = "norm2")
norml = tf.nn.lrn{pooll, 4, =1.8, =@.881 9.8, =8.75, pool2 = tf.nn.max_pool(norm2, =[1, 3, 3, 11,
="norml’) =[1, 2, 2, 11, = 'SAME", ='poel?’)

CNN Implementation via Tensorflow

* Fully-connected layer with rectified linear activation
* Linear transformation to produce logits

with tf.variable_scope('local3') as scope:
with tf.wvariable_scope('softmax_linear') as scope:

weights = _wvariable_with_weight_decay('weights', [192, NUM_CLASSES],

reshape = tf.reshape(pool?, [FLAGS.batch_size, -171)
dim = reshape.get_shape()[1].value =1/152.8, =0.8)
weights = variable with_weight decay('weights', -[dim, 3847, biases = _variable on_cpu('biases’, [NUM_CLASSES],

-3.04, -3.004) tf.constant_initializer(@.8))
biases = variable on_cpu('biases', [384], tf.constant initializer(@.1)) softmax_linear = tf.add(tf.matmul({locald, weights), biases, =sCope.name)
locald = tf.nn.relu(tf.matmul(reshape, weights) + biases, =zcope.name) _activation_summary(softmax_linear)
_activation_summary(local3)

return softmax_linear
with tf.variable_scope('locald’) as scope:
welghts = _wvarilable_with_weight_decay('welghts"', =[384, 192],

=0.04, wd=0.004)
biases = _warilable_on_cpu('blases', [122], tf.constant_initializer(@.1))
locald = tf.an.reluftf.matmul{local3, weights) + biases, =sCope.name)

_activation_summary(locald)

CNN Implementation via Tensorflow

def los={logits, labels):

’ ObJeCtlve fu nCtlon. "rridd LZloss to all the trainable variables.
® CrOSS entropy |OSS &4dd summary for "Loss™ and "Loss/avg".

Args:
Y || 'glr1 (j 3/ logits: Logits from inferencel)
a Wel t eca terms labels: Labels from distorted_inputs or inputs(). 1-D tensor

of shape [batch_size]

Returns:

Loss tensor of type fleoat.

labels = tf.casti(labels, tFf.inte4)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(

=labels, =logits, ='cross_entropy_per_sxample')
cross_entropy_mean = tf.reduce_mean{cross_entropy, ='cross_entropy')

tf.add_to_collection('losses', cross_entropy_mean)

return tf.add_ni{tf.get_collection('losses'), ="total_loss"')

Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch # NUM_EPOCHS_PER_DECAY)
Decay the learning rate exponentially based on the number of steps.
tf.train.exponential_decay(INITIAL_LEARMIMNG_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)

tf.summary.scalar('learning_rate', 1r)

Generate moving averages of all losses and associated summaries.

loss_averages_op = _add_loss_summaries(total_loss)

Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer{lr)

grads = opt.compute_gradients(total_loss)

Apply gradients.
apply_gradient_op = opt.apply_gradients{grads, global_step=global_step)

Add histograms for trainable variables.
for wvar in tf.trainable_variables():

tf.summary.histogram{var.op.name, var)

Add histograms for gradients.
for grad, var in grads:

if grad is not Mone:

tf.summary.histogram{var.op.name + 'Jgradients', grad)

Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingfdverage(
MOVING_AVERAGE_DECAY, global_step)

variables_averages_op = variable_averages.apply(tf.trainable_variables())

with tf.control_dependencies([apply_gradient_op, variables_averages_op]l):

train_op = tf.no_opi{name="train')

return train_op

CNN Implementation via Tensorflow

* Train the deep model via CPU
Implementation

* Code GitHub resource:
https://github.com/tensorflow/m

odels/tree/master/tutorials/imag

e/cifarl0

de

f train():
"""Train CIFAR-18 for a number of steps."""
with tf.Graph().as_default():

global_step = tf.contrib.framework.get_or_create_global_stepi)

images, labels = cifarl@.distorted_inputs()

https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10

Auto-encoder

* SO far, we have described the application of neural networks to
supervised learning, in which we have labeled training examples.

* Now suppose we have only a set of unlabeled training examples.

* An autoencoder neural network Is an unsupervised learning
algorithm that applies backpropagation, setting the target values
to be equal to the inputs:

y® = x®

Auto-encoder Implementation via Matlab

Encoder Decoder
Input (ool Output
FO ' W FO 1 w
784 b [~ b [~ 784
100 784

* Classity MNIST Dataset
* 9 digits (0~9)
* Input size: 28 X 28 = 784
* Encoder size: 100
* Decoder size: 784
* Qutput size: 784

Auto-encoder Implementation via Matlab

* You can see that the features learned by ‘-.
the autoencoder represent curls and
stroke patterns from the digit images ‘..---
* These features are, not surprisingly,
useful for such tasks as object ‘-!--
recognition and other vision tasks. ‘--..!
HREEA

image Classification Application

* Applications of Deep models in ImageNet Challenge

* Introduction of ImageNet
* Introduction of AlexNet model (Krizhevsky 2012)
* Introduction of other different CNN structures (optional)

iImage Classification Application

* What is ImageNet? T N e o VSl
* ImageNet is an Image : ES’S?:?a§=ui§i§§§ci“é§‘-§.a=a:§;£§25Eﬁi’u‘:ﬁ?ﬁﬁ?

, S SN Y sl SRR O e s W MR £ s B 3

database organized e s T
according to the WordNet & o/ Sr nanaas o mems s cumem s & 0. \ @ 8 00T

ctc

hierarchy (currently only the £ 2GR aege aitanz "t anmeng cuwsner e & ol

: - s MPaPEfeREflessse @SN EBRS CEENFNS HAlC D onR

nouns), in which each node g SEOENSCCREDRSE Sy B | A ag"wmm«aw =
: : : SN\iEmES 2 5-0nle-® I M. (ONQIF. s o=0/ »M ¥~

of the hierarchy is depicted g o5 EOB T sws 101 | BEoBEE | Of “BSVE- 1
R+ K15 =Bl RSN AT 70 T\t | S e o gF1@N /

by hundreds and thousands
of Images

* http://www.Image-net.org/

o =B/ mNLEESE oo BE> m-&ﬁimﬁigﬁlaﬁﬂIbH@”
dﬁIimﬁﬂ*a}oU-!ni-lll/l AT L TR LY BN 1
3 tomiEA epDLEEH OW: wLTv“ﬂnHuﬂlmD¢ﬂ.nniﬂn
el TR | .l.'II!Ht;!&ﬂ=ﬂ-1Iu--at““ﬁu3&
a A L Rl LSRR S [TV | PR -¢ﬂﬁﬁﬂdﬁ“’idmﬁ
ail) aBTERLA B S wFEPae - IS i WEDTE AnowTn
‘Mzl -~1-_FEISEM=/I IOVELR TAN ® » » AR--0TN
TAPAE FtliekCdrctoElNoerBaz RN e L MNa | oMl o ¢
RAEmENvyE FMalgl<-1vAPNLLEOE _ 728=Tm@en:;gey l-§

ourtesy of ImageNet (hitp://www.image-net.org/challenges/LSVRC/

poster created by Fengjun Lv using VIPBase

http://www.image-net.org/

image Classification Application

* CNN for object recognition on ImageNet challenge
* Krizhevsky, Sutskever, and Hinton, NIPS 2012

* Trained on ImageNet with two GPU. 2GB RAM on each GPU. 5GB of
system memory

* The first time deep model is shown to be effective on large scale
computer vision task.

* Training lasts for one week

iImage Classification Application

* Model architecture-AlexNet Krizhevsky 2012

N

\

l[\\ \ 13 &3 13
1 .
: b : *‘ 5 _..-- _-H.--_'h-| jr — - 3& _-_-‘_-.— - - —_
1T N [~ 7 27]:,.*' 13 e = 13 'ﬁ: — % |13
3 N -
227 :
\ e 384 384 756

\ 256
Max Max
\ Strids e | POOING pooling

ﬂ?\ of 4

3

Image Classification Application

* Model architecture-AlexNet Krizhevsky 2012
* 5 convolutional layers and 2 fully connected layers for learning features.

* Max-pooling layers follow first, second, and fifth convolutional layers

* The number of neurons in each layer is given by 253440, 186624, 64896,
64896, 43264, 4096, 4096, 1000

* 650000 neurons, 60000000 parameters, and 630000000 connections

f(x) = tanh(x) f(x) = max(0, x)

T A

Very bad (slow to train) Very good (quick to train)

image Classification Application

* Reducing Overfitting
* What is overfitting?

* Useful Methods

* Data augmentation
* Dropout

iImage Classification Application

* Data augmentation

* The neural net has 60M real-valued parameters and
650,000 neurons

* [t overfits a lot. 224 x 224 image regions are
randomly extracted from 256 images, and also their
horizontal reflections

iImage Classification Application

Dropout

* Dropout

2
\oww&»? 7/

-0
LR)
.4.@@00«//‘&@ 04'/
¥
|
m >
=)
©
SRl ol
O O >
at |a
BRERFssi @y
e O gt s I e
=2z 20
S FCHE = §
> O @®© O
HRE TS
g e slan v
C LO +
Dr e s i 9D %
QA A
2 U F e Rt
Sem] Ot
SRy D
([} o

—r"\?
VY2

" 4\‘ A
.5.3 r....?,.
VS

A b’d‘« D

After applying dropout.

Standard Neural Net

-
4

image Classification Application

* Stochastic Gradient Descent Learning
* Momentum Update

dL
Ul'_|_1 = O.9Ui o OOOOSEWL = E<% |Wi>
D;
Wity =W+ Viyq

Where 0.9 is momentum (damping parameter), 0.0005ew; is weight decay,

€ Is learning rate (initialized with 0.01), and E<§_VLV IWi> Is gradient of loss
D;

w.r.t weight averaged over batches (batch size:128)

Image Classification Application

* Achleves top-1 and top-5 test set Sparse coding [2] | 47.1% | 28.2%
error rates of 37.5% and 17.0% SIFT + FVs [24] | 45.7% | 25.7%
* The best performance achieved CNN 37.5% | 17.0%

during the ILSVRC-2010 ,
3 ¢ 0 0 Table 1: Comparison of results on ILSVRC-
competition was 47.1% and 28.2% o
2010 test set. In italics are best results

* Shows the outperformance of achieved by others.
deep learning to traditional
methods

iImage Classification Application

* 96 learned low-level filters

iImage Classification Application

e Classification result

* The correct label I1s written
under each image, and the
probability assigned to the

correct label Is also shown with
a red bar

mlfe

motor scooter

mite
black widow

cockroach
tick

container ship

lifeboat
amphibian

fireboat

drilling platform

motor scooter
go-kart
moped
bumper car
golfcart

erry

fire engine

dead-man's-fingers

o
agaric dalmatian squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
howler monkey

currant

iImage Classification Application

* Top hidden layer can be used as feature for retrieval

> 7N g a = < : ne Y T :
) . < - g 3 ‘ / aacalid o 2
~) % ’ : 3 4 { o B
. . p \. \ : j < » .
3 . o ; N » \ &0 M A (A %
B o gf o - S : ¥ . \ »)
- ® < N . -
e g | I R]] » e
._’_-_:__._‘ T % . 15 > o - 2 SN EIER, .. P
2 ¥ ‘ 2 M = '
x » 54 S o N 7 <
o AT 'y A o 11 3 . :
| »
L N W o X ‘. . B
8 A

e P

S

image Classification Application

* Other different CNN structures for image classification
* Clarifal
* Overfeat
* VGG
* Deeplmage of Baidu
* Network-in-network
* GoogleNet

References

* Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet
classification with deep convolutional neural networks.” Advances
In neural information processing systems. 2012.

* Marc'Aurelio Ranzato. " Large-scale visual recognition with deep
learning. " Proceedings of the [EEE Conference on Computer
Vision and Pattern Recognition. 2013.

Thank you!

