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Social Networks

m Collection of users
m Users are somehow related to one another

m Friends, followers, likes, real-world groups

facebook

http://blog.revolutionanalytics.com/2010/12/facebooks-social-netw ork-g raph.html



Social Networks as a Graph

m Nodes represent users, edges represent relationships
m Edgescan haveweights (e.2. more interaction = more weight)

m Can be used to find clusters
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Questions we can ask

m Based on relationships, what clusters can we detect?

m Similar people maynot be friends. Can we provide
recommendations?

m  Would similar people be interested in similar advertising?

m Arethere outliers? What do outliers represent? What constitutes an
outlier?

m If lots of people have a relationship with a certain person, does this
mean they would likely have a relationship with another?

m Whatis the average degree of separation between anytwo people?



The Cut of a graph

m Defined as a partition of the graphintotwo sets, S and T

m Acutis aset of edges, where one node on an edge isin set S,
and the otherinset T

m Thesize of the cut is how many edges cross the cut
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The Cut of a graph

m We wantto minimize the size of the cut

m Asin, create sets such that there are as few edges between
sets as possible

m Onlyconsiders outbound edges from a set, not edges inside
the sets

m Arethese different? Which is better?
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An Improvement

m We alsowantto consider the interconnectedness of a set
m  Minimize the cut, maximize the “volume” of the resulting sets

m Known as the normalized cut

m VOI(A) =sum of degrees of the nodes in A

m m =number of edges in graph

s LGDEEIcA e ] aua
min(vol(A), 2m—vol(A))  vol(A)

Thus a lower Phi is better



Example

|1, j)e Ejie A, j& A} _ cut(A)
min(vol(A), 2m—vol(A))  vol(A)
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Cut(A)=1 Cut(A)=1 Cut(A)=1 Cut(A)=1
Vol(A) =7 Vol(A) =7 Vol(A) =1 Vol(A) =1

Thusthe left cut should be preferred



Why this Is iImportant

m Optimizing that equation helps us find distinct groups of
people

m Meant for disjoint groups. Not meant for overlaps

m How do we efficiently find groupsin the first place?




Modularity

m Defined by M.E.J. Newman and M. Girvanin 2003

- Newman, M. E. J. & Girvan, M. (2004), 'Finding and evaluating community structure in networks', Phys.
Rev. E 69 (2), 026113

m A means of finding communities in graphs

m “Agood division of a network into communities is not merely
one in which there are few edges between communities; it is
one in which there are fewer than expected edges between
communities”

- Newman MEJ. ‘Modularity and community structure in networks’. Proceedings of the National Academy
of Sciences of the United States of America. 2006;103(23):8577-8582.
d0i:10.1073/pnas.0601602103.




Modularity

m Wantto find groups where number of edges in the group is
higher than what we expect by random chance

- Another view: between-group edges is lower than random

m Higher modularity= more likelyto be a group



Adjacency Matrix

m Matrixthat shows connections
m A;=1if nodesiandjare connected, O otherwise

m Symmetric Matrix
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Modularity cont.

m Suppose we permute the edges of the graph, while keeping
the degree of each node unchanged

m Theexpected number of edges that connect i andj:

m Wwhere 2m =sum of all degrees in graph
m k,=degree of nodei

m Recall: actual number is either O or 1 from A

m We wantto sum up (actual - expected) for each node in the
set



Modularity cont.

m Suppose we divide the graph intotwo sets

m We define:
- s;=1ifnodeiisin set 1
- s;=-1lifnodeiisin set2

m Observe: (s;*s; + 1)/2
m [ftwo nodesiandjareinthe same set, then thatequals 1

m Otherwise, it equalsO



Finally: Modularity Defined!

m  “Modularity Q is given by the sum of A; — kik;,/2m over all pairs
of vertices i, j that fall in the same group.”

m Restated: Sum of actual (A;) minus expected (k;k,/2m) over all
pairs of vertices in the same group

m We want to maximize modularity
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Example @=3.% [,4,,w om

Mp =1 — 4/14 = 5/7 Mee = 1 — 6/14 = 8/14
M =1 — 6/14 = 4/7 My =1 — 3/14 = 11/14
M =1 — 6/14 = 4/7 Mgy = 0 — 3/14 = -3/14
Mg = 0 — 2/14 = -2/14
Thus Q, ~= 1.85 My =1 — 2/14 = 12/14
Mgg = 0 — 1/14 = -1/14
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9/14 = 5/14
6/14 = -6/14
3/14 = -3/14
6/14 = 8/14
3/14 = 11/14
2/14 = -2/14

~= 1.07



Problems at scale

m Social networks often have millions of active users

m Findingthe optimal cutis computationally difficult
- Modularity helps

m Visualizing can be problematic
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Visualization Tools

o Gephi
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Sample Datasets

m Facebook Netvizz - Can be used to download a graph of your
personal network

— Alternatively: GetNet ( )
- Will use this in a demo shortly

m Arizona State University Social Computing;:

m Stanford Large Network Dataset Collection:

”

m Recommended Reading: “Mining of Massive Datasets

- Jure Leskovec, Anand Rajaraman, Jeff Ullman



Demo



Thanks!



