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Social Networks

■ Collection of users

■ Users are somehow related to one another

■ Friends, followers, likes, real-world groups

http://blog.revolutionanalyt ics.com/2010/12/facebooks-social-netw ork-graph.html



Social Networks as a Graph

■ Nodes represent users, edges represent relationships

■ Edges can have weights (e.g. more interaction = more weight)

■ Can be used to find clusters

https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/



Questions we can ask

■ Based on relationships, what clusters can we detect?

■ Similar people may not be friends. Can we provide 
recommendations?

■ Would similar people be interested in similar advertising?

■ Are there outliers? What do outliers represent? What constitutes an 
outlier?

■ If lots of people have a relationship with a certain person, does this 
mean they would likely have a relationship with another?

■ What is the average degree of separation between any two people?



The Cut of a graph

■ Defined as a partition of the graph into two sets, S and T

■ A cut is a set of edges, where one node on an edge is in set S, 
and the other in set T

■ The size of the cut is how many edges cross the cut
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The Cut of a graph

■ We want to minimize the size of the cut

■ As in, create sets such that there are as few edges between 
sets as possible

■ Only considers outbound edges from a set, not edges inside 
the sets

■ Are these different? Which is better?
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An improvement

■ We also want to consider the interconnectedness of a set

■ Minimize the cut, maximize the “volume” of the resulting sets

■ Known as the normalized cut

■ vol(A) = sum of degrees of the nodes in A

■ m = number of edges in graph

= cut(A)
vol(A)

Thus a lower Phi is better
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Thus the left cut should be preferred

= cut(A)
vol(A)



Why this is important

■ Optimizing that equation helps us find distinct groups of 
people

■ Meant for disjoint groups. Not meant for overlaps

■ How do we efficiently find groups in the first place?



Modularity

■ Defined by M.E.J. Newman and M. Girvan in 2003
– Newman, M. E. J. & Girvan, M. (2004), 'Finding and evaluating community structure in networks', Phys. 

Rev. E 69 (2) , 026113

■ A means of finding communities in graphs

■ “A good division of a network into communities is not merely 
one in which there are few edges between communities; it is 
one in which there are fewer than expected edges between 
communities”

– Newman MEJ. ‘Modularity and community structure in networks’. Proceedings of the National Academy 
of Sciences of the United States of America. 2006;103(23):8577-8582. 
doi:10.1073/pnas.0601602103.



Modularity

■ Want to find groups where number of edges in the group is 
higher than what we expect by random chance

– Another view: between-group edges is lower than random

■ Higher modularity = more likely to be a group



Adjacency Matrix

■ Matrix that shows connections

■ Aij = 1 if nodes i and j are connected, 0 otherwise

■ Symmetric Matrix
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0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 1 0
0 0 0 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
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Modularity cont.

■ Suppose we permute the edges of the graph, while keeping 
the degree of each node unchanged

■ The expected number of edges that connect i and j:
– e = (kikj)/2m
■ where 2m = sum of all degrees in graph
■ ki = degree of node i

■ Recall: actual number is either 0 or 1 from A

■ We want to sum up (actual – expected) for each node in the 
set



Modularity cont.

■ Suppose we divide the graph into two sets

■ We define:
– si = 1 if node i is in set 1
– si = -1 if node i is in set 2

■ Observe: (si*sj + 1)/2

■ If two nodes i and j are in the same set, then that equals 1

■ Otherwise, it equals 0



Finally: Modularity Defined!

■ “Modularity Q is given by the sum of Aij − kikj/2m over all pairs 
of vertices i, j that fall in the same group.”

■ Restated: Sum of actual (Aij) minus expected (kikj/2m) over all 
pairs of vertices in the same group

■ We want to maximize modularity

Actual - expectedSum over
All pairs

0 if different sets,
1 if in same set



Example
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Mab = 1 – 4/14 = 5/7
Mac = 1 – 6/14 = 4/7
Mbc = 1 – 6/14 = 4/7

Thus Qs1 ~= 1.85

Mde = 1 – 6/14 = 8/14
Mdf = 1 – 3/14 = 11/14
Mdg = 0 – 3/14 = -3/14
Mef = 0 – 2/14 = -2/14
Meg = 1 – 2/14 = 12/14
Mfg = 0 – 1/14 = -1/14

Thus Qs2 ~= 1.78



Example
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Mab = 1 – 4/14 = 10/14
Mac = 1 – 6/14 = 8/14
Mad = 0 – 6/14 = -6/14
Mae = 0 – 4/14 = -4/14
Maf = 0 – 2/14 = -2/14
Mbc = 1 – 6/14 = 8/14
Mbd = 0 – 6/14 = -6/14
Mbe = 0 – 4/14 = -4/14
Mbf = 0 – 2/14 = -2/14

Mcd = 1 – 9/14 = 5/14
Mce = 0 – 6/14 = -6/14
Mcf = 0 – 3/14 = -3/14
Mde = 1 – 6/14 = 8/14
Mdf = 1 – 3/14 = 11/14
Mef = 0 – 2/14 = -2/14

Thus, Qs1 ~= 1.07



Problems at scale
■ Social networks often have millions of active users

■ Finding the optimal cut is computationally difficult
– Modularity helps

■ Visualizing can be problematic



Visualization Tools

http://gephi.github.io http://www.cytoscape.org



Sample Datasets

■ Facebook Netvizz – Can be used to download a graph of your 
personal network

– Alternatively: GetNet (http://snacourse.com/getnet)
– Will use this in a demo shortly

■ Arizona State University Social Computing: 
http://socialcomputing.asu.edu/pages/datasets

■ Stanford Large Network Dataset Collection: 
https://snap.stanford.edu/data/

■ Recommended Reading: “Mining of Massive Datasets”
– Jure Leskovec, Anand Rajaraman, Jeff Ullman
– http://www.mmds.org



Demo



Thanks!


