
Hadoop and its Ecosystem

Hala El-Ali

 EMIS/CSE 8331

SMU

helali@smu.edu

Big Data Technologies

Agenda

 Introduction

 Hadoop Core

 Demo

 Hadoop Ecosystem

 Demo

 QA

Big Data

 Big data is the term for a collection of structured and

unstructured data sets so large and complex that it becomes

difficult to process using on-hand database management tools

or traditional data processing applications.

 Big Data 3 Vs

 Volume: large amount of data

 Velocity: needs to be analyzed quickly

 Variety : structured and unstructured

Scale of Big Data

Bytes (8 Bits)

Kilobyte (1000 Bytes)

Megabyte (1 000 000 Bytes)

Gigabyte (1 000 000 000 Bytes)

Terabyte (1 000 000 000 000 Bytes)  Traditional tech.

Petabyte (1 000 000 000 000 000 Bytes)  Hadoop

Exabyte (1 000 000 000 000 000 000 Bytes)

Zettabyte (1 000 000 000 000 000 000 000 Bytes)

Yottabyte (1 000 000 000 000 000 000 000 000 Bytes)

The Perfect Storm (2000’s)
 Data is growing at exponential rates:
 Generated in many ways (social media, consumer transactions,

scientific data, etc.)
 Acquired in many ways (GPS, sensors, scanners, etc.)

 The demand for “knowledge” is growing at the same rate.
 IN EVERY ASPECT!!!
 Need to process data in real-time

 Hardware performance growth slowed:
 CPU performance growth hit a wall
 Storage density continues to grow, but linearly
 Networks continue to be a bottleneck

 Hitting technical limits created a big push to parallel process and
distribute

What is Hadoop and Why it Matters?
 A programming framework for Big Data that is:

 Distributed (runs on master-slave cluster)

 Scalable (1000’s of nodes)

 Fault-Tolerant (built-in redundancy)

 Cost-efficient (commodity hardware)

 Open-Source (Apache projects)

 Free (Apache License 2.0)

 Used and supported by major corporation (Google, Yahoo!, IBM,
ebay, facebook, etc.)

 Commercial distributions from companies like Cloudera and
Hortonworks.

 The World’s de facto enterprise-viable Big Data solution.

How it does it?

 Distribute:

 Scale-out compute and storage using clusters of inexpensive

commodity hardware.

 Provide a platform for highly-available distributed storage

(Hadoop Distributed File System)

 Provide a platform for highly-available distributed compute

(MapReduce).

 Localize (reduce reliance on networks)

 Reduce network traffic by moving process where the data is.

Brief History
 First the web was invented, then searching the web became

an idea.

 The web crawlers were invented and automated search
(search engines).

 Nutch project: crawl and index on multi-machines. Google
was working on the same idea.

 Nutch split into crawler (Nutch) and distributed computing
and processing (Hadoop).

 2004 Google published white papers on Google File System,
Map-Reduce, and Big Table.

 Hadoop is an implementation of all three.

Really Brief History

Hadoop Core

 HDFS Hadoop Distributed File System (follows Google File

System)

 Hadoop MapReduce: an implementation of MapReduce

programming model

 Yarn (Hadoop 2.0) A framework for job scheduling and

cluster resource management. Yarn can be used for other

than MapReduce jobs.

HDFS

 Hadoop Distributed File System that runs of file systems

 Large files are split into blocks or partitions

 Default is to store 3 copies of each partition. Two local copies and 1

remote copy (rack or subnet aware).

 Master-slave architecture

 Name Node (Master): manages files and blocks and runs on master

node. Stores the metadata of the HDFS. One Name Node per cluster.

 Data Node (Slave): stores blocks and runs on slave nodes. There can be

thousands of those.

 Hadoop 2 added Backup Node and Checkpoint Node (replaces

Secondary Node).

 Clients access HDFS via API or command line.

HDFS

HDFS Commands

 [-appendToFile <localsrc> ... <dst>]

 [-cat [-ignoreCrc] <src> ...]

 [-checksum <src> ...]

 [-chgrp [-R] GROUP PATH...]

 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

 [-chown [-R] [OWNER][:[GROUP]] PATH...]

 [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]

 [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

 [-count [-q] <path> ...]

 [-cp [-f] [-p] <src> ... <dst>]

 [-createSnapshot <snapshotDir> [<snapshotName>]]

 [-deleteSnapshot <snapshotDir> <snapshotName>]

 [-df [-h] [<path> ...]]

 [-du [-s] [-h] <path> ...]

 [-expunge]

 [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

 [-getfacl [-R] <path>]

 [-help [cmd ...]]

 [-ls [-d] [-h] [-R] [<path> ...]]

 [-mkdir [-p] <path> ...]

 [-moveFromLocal <localsrc> ... <dst>]

 [-moveToLocal <src> <localdst>]

 [-mv <src> ... <dst>]

 [-put [-f] [-p] <localsrc> ... <dst>]

 [-renameSnapshot <snapshotDir> <oldName>
<newName>]

 [-rm [-f] [-r|-R] [-skipTrash] <src> ...]

 [-rmdir [--ignore-fail-on-non-empty] <dir> ...]

 [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set
<acl_spec> <path>]]

 [-setrep [-R] [-w] <rep> <path> ...]

 [-stat [format] <path> ...]

 [-tail [-f] <file>]

 [-test -[defsz] <path>]

 [-text [-ignoreCrc] <src> ...]

 [-touchz <path> ...]

 [-usage [cmd ...]]

MapReduce
 Programming model for distributed processing.

 MapReduce engine consists of JobTracker and TaskTracker

 JobTracker runs on master node, client submit jobs to it. It
pushes work to TaskTracker. Rack aware, tries to assign tasks
to node that contains the data or a node near it.

 TaskTracker: runs on slave node, spawns a JVM for each task,
holds ‘available’ slots where tasks are pushed by the
JobTracker. Speculative scheduling for slow running
TaskTracker.

 Scheduling: Default is FIFO. Fair and Capacity Scheduling
was added as options.

MapReduce

MapReduce

Yarn

 MapReduce V2 split the JobTracker into two daemons:

scheduling/monitoring and resource management.

 Yarn addresses issues with MapReduce V1.

 Yarn enables fine grained memory allocation.

 Enables larger clusters

 Yarn enables running jobs other than MapReduce on the

cluster.

demo

MapReduce demo

What Hadoop is Not
 Apache Hadoop is not a substitute for a database

 No ACID

 No SQL

 No real-time

 MapReduce is not always the best algorithm

 No shared states

 No shared memory

 No flow, locks, dependency

 HDFS is not a complete POSIX filesystem

 No seek to the middle and write into file

Transfer – Flume

 Service for efficiently collecting, aggregating, and moving large
amounts of log data (flume.apache.org)

 Runs in its own cluster

 Simple architecture: Source-Channel-Sink

 Supported sources are: file, logs, syslog, stdout, user-defined
(events)

 Supported sinks are: HDFS, files system, user-defined (Hbase).

 Agents collect data from source computers. Data is processed
(encrypted, compressed, ..).

 Agent can perform more pre-persist processing (cleaned,
enriched, transformed) then parallel stored in any format (text,
binary, ..).

Transfer – Flume

Transfer – Sqoop

 Supports any database that supports

JDBC and allows for custom

connectors.

 Free but not open source.

 A tool designed for efficiently transferring bulk data between

Apache Hadoop and structured datastores such as relational

databases (sqoop.apache.org).

 It is capable of transferring the data in both directions.

 Supports incremental imports.

Transfer

Persist – Hbase (Hadoop Database)

 Built on top of HDFS to provide real-time, random read/write
access to the data.

 Modeled after Google Bigtable, suitable for massive sparse data.

 Column-Family based, schema consists of column-families definitions.
A column-family is like a table except columns can be added without
schema change. Column families are stored together on HDFS

 Access is via a primary key (row key) only, no indexes.

 Data sorted by row key and partitioned (sharded) into regions by row-
key range.

 Cells are versioned usually timestamped.

 New data is held in memory, flushed to disk in files, compaction is run
to remove expired and deleted cells.

Persist – Hbase Diagram

Hbase Vs. RDBMS

Data Interactions - Hive

 Data warehouse software facilitates querying and managing

large datasets residing in distributed storage (hive.apache.org)

 Initially developed by Facebook.

 Provides a SQL-like language called HiveQL

 Command line interface, web and JDBC/ODBC.

 Runs on your computer.

 It creates MapReduce jobs in the background to execute the

queries.

 Leverage SQL skills

 Reduce programming and testing time.

Data Interactions - Hive

Data Interactions – Pig
 Apache Pig is a platform for analyzing large data sets that

consists of a high-level language for expressing data

analysis programs, coupled with infrastructure for

evaluating these programs. The salient property of Pig

programs is that their structure is amenable to substantial

parallelization, which in turns enables them to handle very

large data sets. (pig.apache.org)

 Components are:

 A compiler that generates MapReduce jobs .

 A dataflow, script-like language for transforming large datasets

called PigLatin.

 Interfaces are command line and Java API PigServer

PigLatin
 Scripting-like language

 Defines data types like primitive datatype, tuple, sets and bags.

 Provides a list of commands for transforming data.

 Each command is executed as a MapReduce job (newer version

would optimize the execution of a block of commands).

 Runs on your computer but submits the execution to a hadoop

cluster

 Extendible (users can define their own processing UDF) (See

Piggybank for community UDF)

PigLatin

PigLatin

PigLatin demo (using grunt interactive shell).

Mahout

 Per http://hortonworks.com/hadoop/mahout/:
“Mahout supports four main data science use cases:

Collaborative filtering – mines user behavior and makes product

recommendations (e.g. Amazon recommendations)

Clustering – takes items in a particular class (such as web pages or newspaper

articles) and organizes them into naturally occurring groups, such that items

belonging to the same group are similar to each other

Classification – learns from existing categorizations and then assigns unclassified

items to the best category

Frequent itemset mining – analyzes items in a group (e.g. items in a shopping

cart or terms in a query session) and then identifies which items typically appear

together “

http://hortonworks.com/hadoop/mahout/

Mahout

QA

References
 White, Tom. Hadoop The Definitive Guide. 3rd ed. O'Reilly, 2012. Print.

 Rathbone, Matthew. "A Beginners Guide to Hadoop." Blog RSS. 17 Apr. 2013. Web. 30 Mar.
2015. http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html

 Allouche, Gil. "Hadoop 101: An Explanation of the Hadoop Ecosystem." Hadoop 101: An
Explanation of the Hadoop Ecosystem. DZone, 17 Dec. 2014. Web. 30 Mar. 2015.
<http://architects.dzone.com/articles/hadoop-101-explanation-hadoop>.

 Garment, Victoria. "Hadoop 101: The Most Important Terms, Explained." Plotting Success. 27
Mar. 2014. Web. 30 Mar. 2015. <http://www.plottingsuccess.com/hadoop-101-important-
terms-explained-0314/>.

 Jobke, Morris. "Hadoop - NameNode, Checkpoint Node and Backup Node - Morris Jobke."
11 Dec. 2013. Web. 30 Mar. 2015. <http://morrisjobke.de/2013/12/11/Hadoop-
NameNode-and-siblings/>.

 Li, Heifeng. "Distributed NoSQL: HBase and Accumulo." Dataconomy. 18 Aug. 2014. Web. 30
Mar. 2015. <http://dataconomy.com/distributed-nosql-hbase-and-accumulo/>.

 "The Zettabyte Era-Trends and Analysis." Cisco. Web. 30 Mar. 2015.
<http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/VNI_Hyperconnectivity_WP.html>.

 Sutter, Herb. "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software." The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. 30 Mar.
2005. Web. 30 Mar. 2015. <http://www.gotw.ca/publications/concurrency-ddj.htm>.

http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html
http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html
http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html
http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html
http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html

References
 "Apache Mahout." Hortonworks. Web. 30 Mar. 2015. <http://hortonworks.com/hadoop/mahout/>.

 "Introduction to Apache Pig." - Online Hadoop Training Video. 4 Oct. 2011. Web. 30 Mar. 2015.
<http://www.cloudera.com/content/cloudera/en/resources/library/training/introduction-to-apache-
pig.html>.

 "Cloudera Essentials for Apache Hadoop." Hadoop Essentials Training. Web. 30 Mar. 2015.
<http://www.cloudera.com/content/cloudera/en/training/library/hadoop-essentials.html>.

 Ghai, Sachin. "HadoopSphere." Apache Hadoop Ecosystem. Web. 30 Mar. 2015.
<http://www.hadoopsphere.com/2013/03/apache-hadoop-ecosystem-march-2013_12.html>.

 "Hadoop Tutorial: Map-Reduce on YARN Part 1 -- Overview and Installati..." Hadoop Tutorial: Map-Reduce
on YARN Part 1 -- Overview and Installati... Web. 30 Mar. 2015.
<http://www.slideshare.net/martyhall/hadoop-tutorial-mapreduce-on-yarn-part-1-overview-and-
installation>.

 "Cheat Sheet Hive for SQL Users." Web. 30 Mar. 2015. <http://hortonworks.com/wp-
content/uploads/downloads/2013/08/Hortonworks.CheatSheet.SQLtoHive.pdf>.

 "Welcome to Apache Pig!" Welcome to Apache Pig! Web. 30 Mar. 2015. <https://pig.apache.org/>.

 "General." Apache Hive TM. Web. 30 Mar. 2015. <https://hive.apache.org/>.

 "Welcome to Apache Flume¶." Welcome to Apache Flume — Apache Flume. Web. 30 Mar. 2015.
<https://flume.apache.org/>.

 "Sqoop -." Sqoop -. Web. 30 Mar. 2015. <https://sqoop.apache.org/>.

