

Text Mining Theory and Applications Anurag Nagar

Topics

- Introduction
- What is Text Mining
- Features of Text
- Document Representation
- Vector Space Model
- Document Similarities
- Document Classification and Clustering
- Software Packages for Text Mining
- Case Study of News Sentiment Analysis

Background

- Text data is everywhere books, news, articles, financial analysis, blogs, social networking, etc.
- According to estimates, 80% of world's data is in unstructured text format [13].
- Need methods to extract, summarize, and analyze useful information from this data.
- Text Mining seeks to automatically discover useful knowledge from the massive amount of data.
- Lots of research going on in area of text mining in industry and academics.

What is Text Mining?

- Use of computational techniques to extract high quality information from text.
- Extract and discover knowledge hidden in text automatically (S. Ananiadou).
- KDD definition "discovery by computer of new, previously unknown information, by automatically extracting information from a usually large amount of different unstructured textual resources."

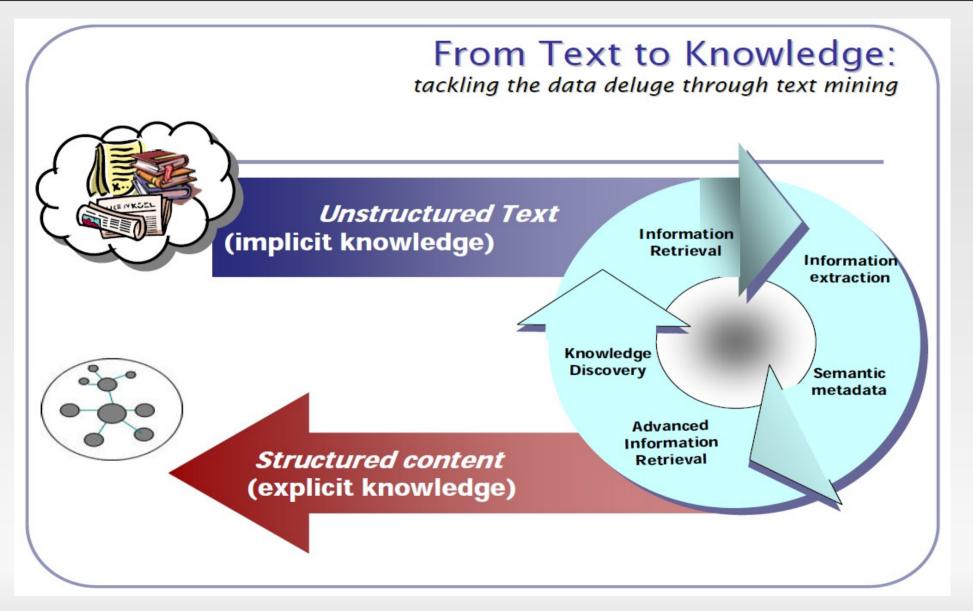
What is Text Mining?

- Application areas:
 - finding important concepts / ideas
 - finding key named entities
 - discovering associations between terms
 - generating hypothesis
 - summarizing large amount of textual and factual data.
 - link analysis
 - information retrieval
 - financial news analysis for stock prediction
 - Text Categorization / Classification
 - Almost everything :)

Text Mining tasks

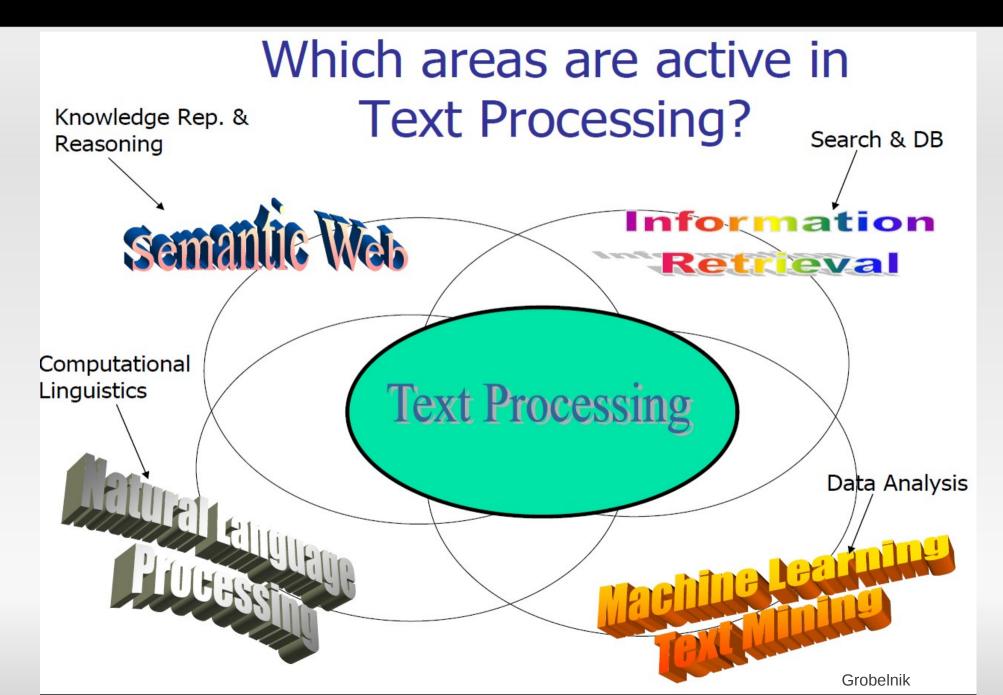
- Document Categorization (supervised learning)
- Document Clustering/Organization (unsupervised learning)
- Summarization (key words, indices, etc.)
- Visualization (word cloud)
- Numeric prediction (stock market prediction based on news text)

Text to Knowledge



S. Ananiadou

Text Mining Areas



Features of Text Data

- High dimensionality
- Large number of features
- Multiple ways to represent the same concept.
- Highly redundant data.
- Unstructured data.
- Easy for humans, hard for machine.
- Abstract ideas hard to represent.
- Huge amount of data to be processed.

Text Properties

Word properties:

- Have relationships eg: synonyms, antonyms
- Depend on context eg: the words "cold", "run"
- Have different forms eg: go, goes, went
- Word frequencies in text have power

distribution

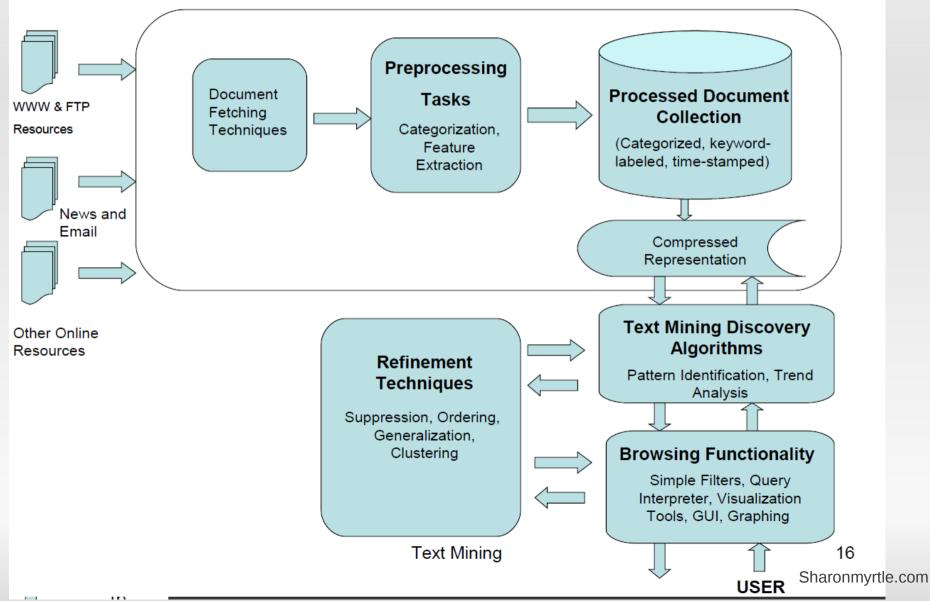
...small number of very frequent words

...big number of low frequency words

- Stop Words are often removed eg: a, the, to, what, etc

Architecture of TM Systems

The General Architecture of TMS:



Document Representation

 Any document can be represented by a list of terms and their associated weights:

$$D = \{(t_1, w_1), (t_2, w_2), \dots, (t_n, w_n)\}$$

where t_i is the ith term and
w_i is the weight for the ith term

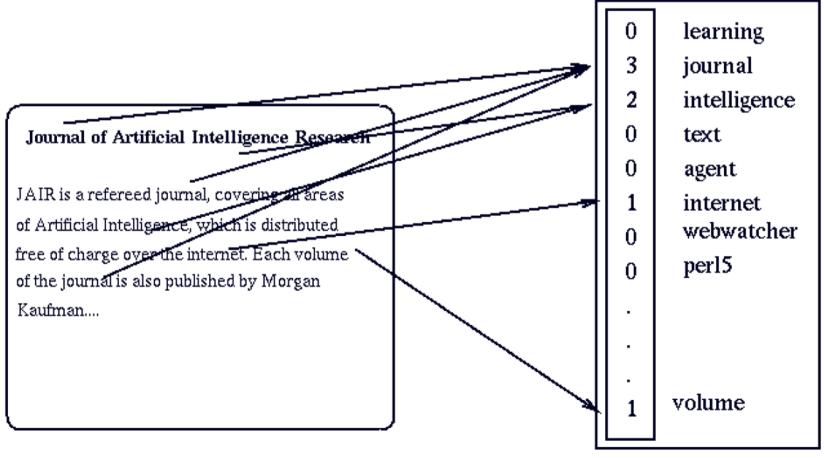
 Weight is a measure of the importance of a term in terms of information content.

Vector space model

- Documents are also treated as a "bag" of words or terms.
- Each document is represented as a vector.
- However, the term weights are no longer 0 or 1. Each term weight is computed based on some variations of TF or TF-IDF scheme.
- Term Frequency (TF) Scheme: The weight of a term t_i in document d_j is the number of times that t_i appears in d_j, denoted by f_i. Normalization may also be applied.

Bag of Words Representation

Bag-of-words document representation



TF-IDF term weighting scheme

- The most well known weighting scheme
 - TF: still term frequency
 - IDF: inverse document frequency.
 - N: total number of docs df_i: the number of docs that t_i appears.
- The final TF-IDF term weight is:

$$tf_{ij} = \frac{f_{ij}}{\max\{f_{1j}, f_{2j}, ..., f_{|V|j}\}}$$

$$idf_i = \log \frac{N}{df_i}$$

$$w_{ij} = tf_{ij} \times idf_i$$

TF-IDF Example

Consider a document containing 100 words wherein the word **cow** appears **3** times. Following the previously defined formulas, the term frequency (TF) for cow is then (3 / 100) = 0.03. Now, assume we have 10 million documents and cow appears in one thousand of these. Then, the inverse document frequency is calculated as $log(10\ 000\ 000\ /\ 1\ 000) = 4$. The tf*idf score is the product of these quantities: $0.03 \times 4 = 0.12$.

TF-IDF Weighting Example

Example document and its vector representation

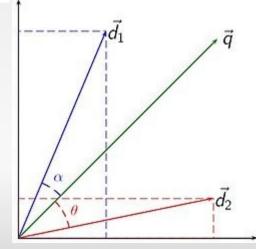
- TRUMP MAKES BID FOR CONTROL OF RESORTS Casino owner and real estate Donald Trump has offered to acquire all Class B common shares of Resorts International Inc, a spokesman for Trump said. The estate of late Resorts chairman James M. Crosby owns 340,783 of the 752,297 Class B shares. Resorts also has about 6,432,000 Class A common shares outstanding. Each Class B share has 100 times the voting power of a Class A share, giving the Class B stock about 93 pct of Resorts' voting power.
- [RESORTS:0.624] [CLASS:0.487] [TRUMP:0.367] [VOTING:0.171]
 [ESTATE:0.166] [POWER:0.134] [CROSBY:0.134] [CASINO:0.119]
 [DEVELOPER:0.118] [SHARES:0.117] [OWNER:0.102] [DONALD:0.097]
 [COMMON:0.093] [GIVING:0.081] [OWNS:0.080] [MAKES:0.078] [TIMES:0.075]
 [SHARE:0.072] [JAMES:0.070] [REAL:0.068] [CONTROL:0.065]
 [ACQUIRE:0.064] [OFFERED:0.063] [BID:0.063] [LATE:0.062]
 [OUTSTANDING:0.056] [SPOKESMAN:0.049] [CHAIRMAN:0.049]
 [INTERNATIONAL:0.041] [STOCK:0.035] [YORK:0.035] [PCT:0.022]
 [MARCH:0.011]

Cosine Similarity

- Relevance of a query q (represented as a vector) to document d_i can be calculated using cosine similarity.
- Cosine Similarity can be computed as:

$$cosine(\mathbf{d}_{j},\mathbf{q}) = \frac{\langle \mathbf{d}_{j} \bullet \mathbf{q} \rangle}{\|\mathbf{d}_{j}\| \times \|\mathbf{q}\|} = \frac{\sum_{i=1}^{|V|} w_{ij} \times w_{iq}}{\sqrt{\sum_{i=1}^{|V|} w_{ij}^{2}} \times \sqrt{\sum_{i=1}^{|V|} w_{iq}^{2}}}$$

It can be visualized as the cosine of the angle between the two documents when they are represented as a vector.



Word Frequencies

Zipf's Law:

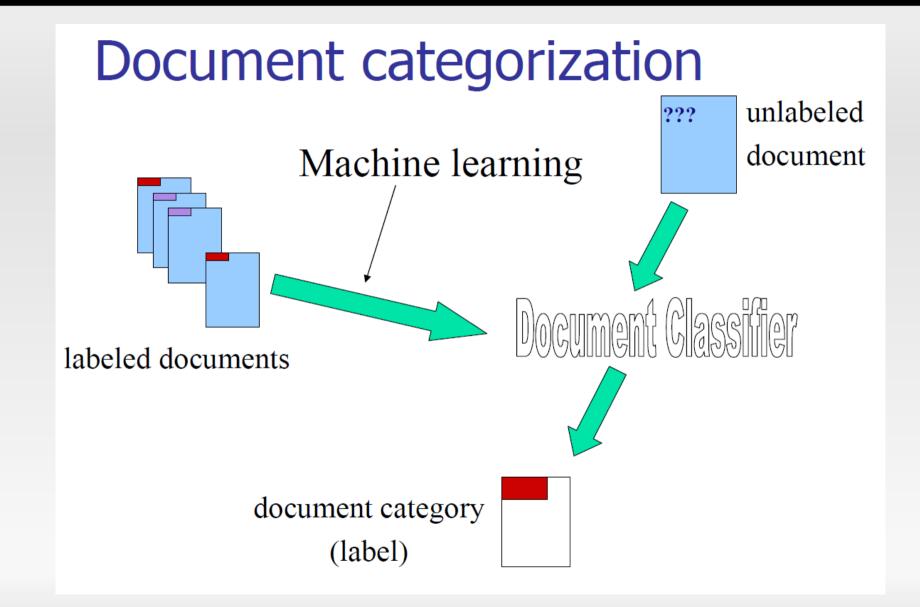
- Idea: We use a few words very often, and most words very rarely, because it's more effort to use a rare word.
- Zipf's Law: Product of frequency of word and its rank is [reasonably] constant.
- Empirically demonstrable. And holds up over different languages.

Zipf Law Example

Zipf's Law Example:

Word	Rank	Freq.	Rank*F	Word	Rank	Freq.	Rank*F
the	1	120021	120021	investors	400	828	331200
of	2	72225	144450	head	800	421	336800
and	4	53462	213848	warrant	1600	184	294400
for	8	25578	204624	Tehran	3200	73	233600
is	16	16739	267824	guarantee	6400	25	160000
company	32	9340	298880	Pittston	10000	11	110000
Co.	64	4005	256320	thinly	20000	3	60000
quarter	100	2677	267700	Morgenthaler	40000	1	40000
unit	200	1489	297800	tabulating	47075	1	47075

Classification / Categorization



Classification Algorithms

k- Nearest Neighbors
 Naive Bayes
 Support Vector Machines

Traditional Algorithms

Newer Algorithms 4) Boos Texter – simple, relatively fast algorithm with excellent classification accuracy. Based on an ensemble of classifiers approach. Schapire, Robert E., and Yoram Singer. "BoosTexter: A Boosting-based System for Text Categorization." Machine Learning 39 (2000).

5) Based on Neural Networks, Decision Trees

K-Nearest Neighbor Classifier

K-Nearest Neighbor Classifier

Classification Problem:

- **Given:** a training set of vectors $x_1, ..., x_n$ in \mathbb{R}^m with their classifications (labels) $d_1, ..., d_n$ in $\{0, 1\}$ (or in $\{0, ..., c\}$).
- **Problem:** classify (assign labels to) vectors from a test set $y_1, y_2, y_3, ...$

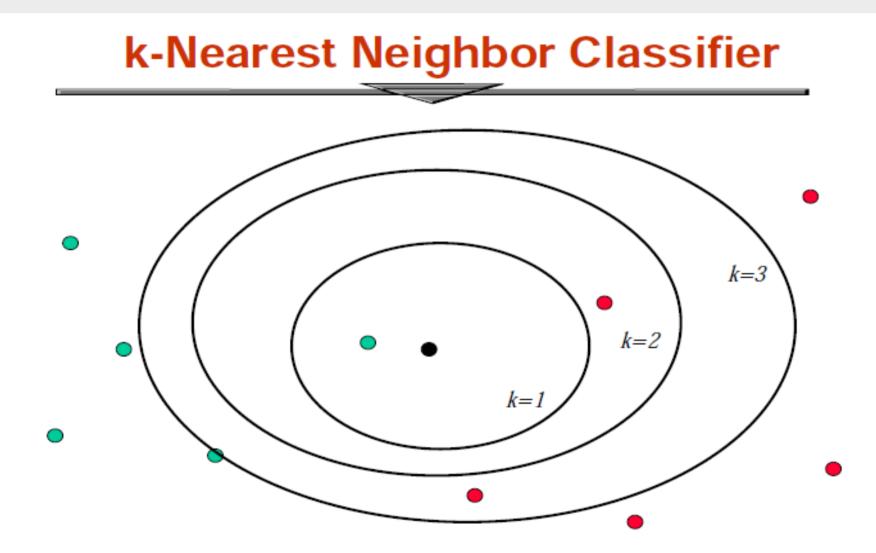
Main Idea:

"cases that are *close/similar* to each other should have the same labels"

to find a label for y find the distance between y and $x_1, x_2, ..., x_n$; x which is closest to y (*nearest neighbor*) determines the label of y.

14

K-Nearest Neighbor Classifier



Instead of "the closest x" we look for "k closest x's"; majority wins !15

Model Evaluation

- Precision is the fraction of retrieved instances that are relevant.
- Recall is the fraction of relevant instances that are retrieved

$$precision = \frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{retrieved documents\}|}$$

$$recall = \frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{relevant documents\}|}$$

A measure that combines precision and recall is the F-score

 $F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Software for Text Mining

Software for Text Mining

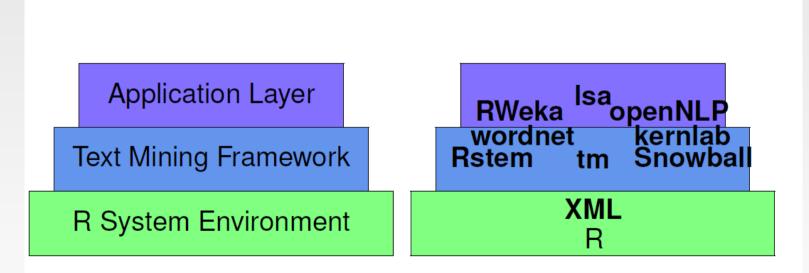
- A number of academic/commercial software available:
 - 1. SAS TextMiner
 - 2. IBM SPSS
 - 3. Number of open source packages in R eg:tm
 - 4. Boos Texter
 - 5. StatSoft
 - 6. AeroText
- Text Data is everywhere it needs to be mined !!

R package - tm

- "tm" package for text mining in R.
- Package offers functionality for managing text documents, performing analysis, and data mining.
- Numerous extensions and plugins have been developed for handling various formats of input data and producing summary results.

R package - tm

- Input is represented as a Corpus
- Various readers perform automated preprocessing, feature extraction, and load data into memory.



Conceptual Layers of R framework

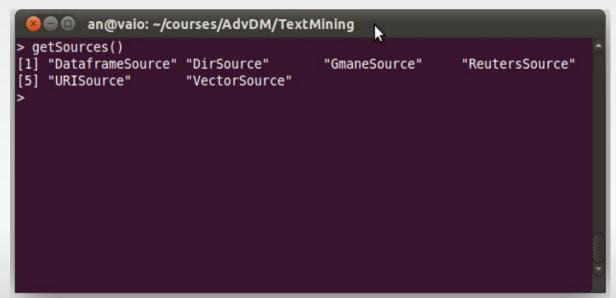
Corpus Construction

- 1. Fetch documents from sources (disk, Internet)
- 2. Parse document structure (HTML, PDF, getReaders())
- 3. Extract text and meta information
- 4. Dynamically create corpus
- 5. Fill corpus
 - immediately
 - delayed (load on demand)
 - referentially (using pointers to a database)

Package tm

getReaders() gives available readers

getSources() gives available sources



Loading data

Loading Data from text documents in a directory

```
> txt <- system.file("texts", "txt", package = "tm")
> (ovid <- Corpus(DirSource(txt),
+ readerControl = list(language = "lat")))</pre>
```

A corpus with 5 text documents

```
>summary(ovid)
>inspect(ovid[1:2])
```

Loading data from the web

Can use URISource to create corpus

- > DosSource <- URISource("http://www.gutenberg.org/files/2554/2554.txt")</pre>
- > Dostoevsky <- Corpus(DosSource)</pre>
- > Dostoevsky[[1]][1]
- [1] "The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky"

```
> tf <- termFreq(Dostoevsky[[1]])
> head(tf)
```

"that	and	he	she	translator's	zossimov
1	2	1	1	1	1

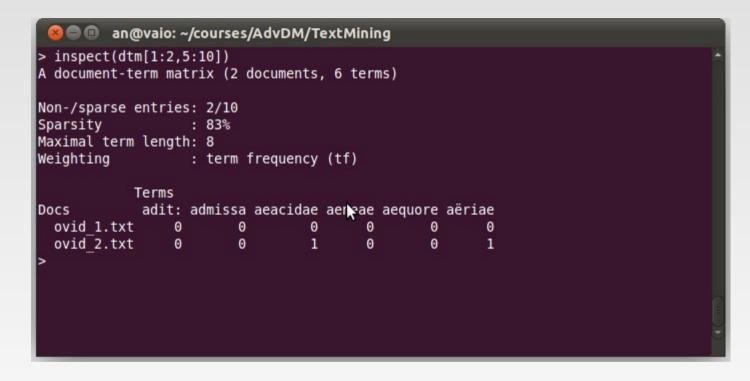
Document Term Matrix

 Document-Term matrix contains documents as rows and terms as columns:

😣 🗖 🗊 an@vaio: ~/courses/AdvDM/TextMining	
> dtm<-DocumentTermMatrix(ovid) > dtm A document-term matrix (5 documents, 384 terms)	
Non-/sparse entries: 419/1501 Sparsity : 78% Maximal term length: 22 Weighting : term frequency (tf) >	

Document Term Matrix

Can inspect the matrix created:



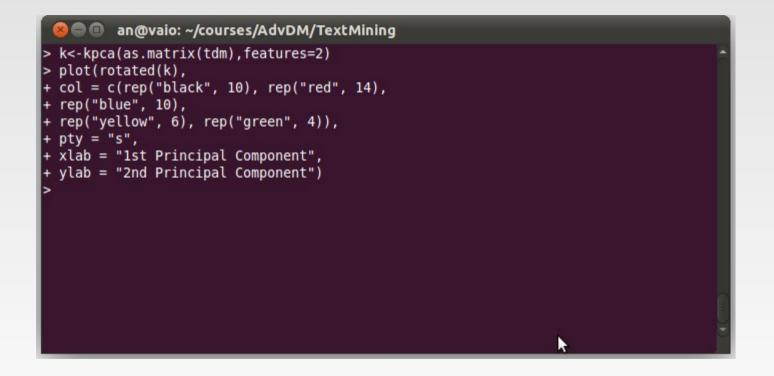
Term Document Matrix (TDM)

- TDM contains terms as rows and documents as columns.
- Can also create chunks of terms and load.

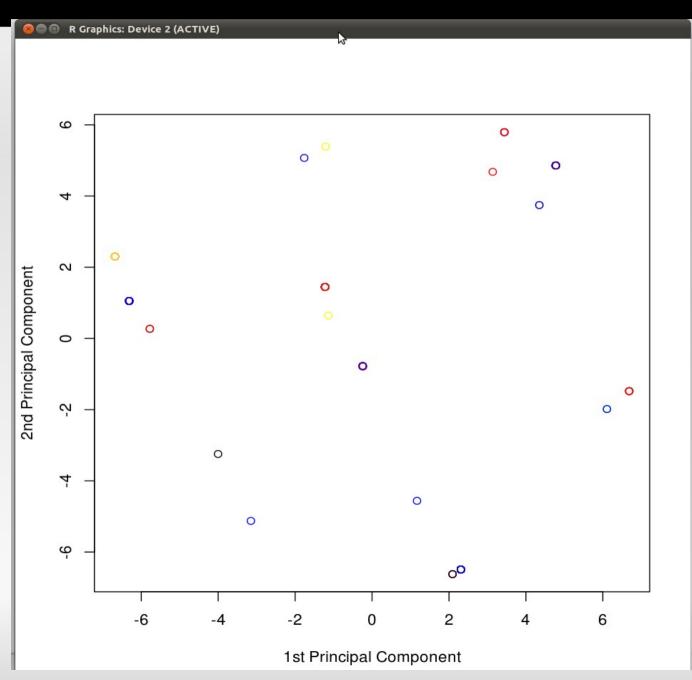
```
an@vaio: ~/courses/AdvDM/TextMining
      > tdm<-TermDocumentMatrix(makeChunks(ovid,500),list(weighting=weightBin))</p>
> inspect(tdm[5:10,1:2])
A term-document matrix (6 terms, 2 documents)
Non-/sparse entries: 2/10
Sparsity
                   : 83%
Maximal term length: 8
Weighting
          : binary (bin)
          Docs
Terms
           1 2
  adit:
           0 0
  admissa 00
  aeacidae 0 1
          0 0
  aeneae
  aequore 0 0
  aëriae
          0 1
```

PCA Analysis using TDM

TDM matrix can be used for PCA analysis and plotting



PCA plot using 2 features



Processing text

Very easy to process and manipulate text.

Stemming a document:

> sd <- stemDocument(Dostoevsky[[1]])</pre>

> head(sd)

[1] "The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevski"

[2] ""

[3] "This eBook is for the use of anyon anywher at no cost and with"

[4] "almost no restrict whatsoever. You may copi it, give it away or"

[5] "re-us it under the term of the Project Gutenberg Licens includ"

[6] "with this eBook or onlin at www.gutenberg.org"

• Unlisting words:

> unlist(strsplit(Dostoevsky[[1]][(start+6):(start+8)], split="[[:space:]]", perl=T))

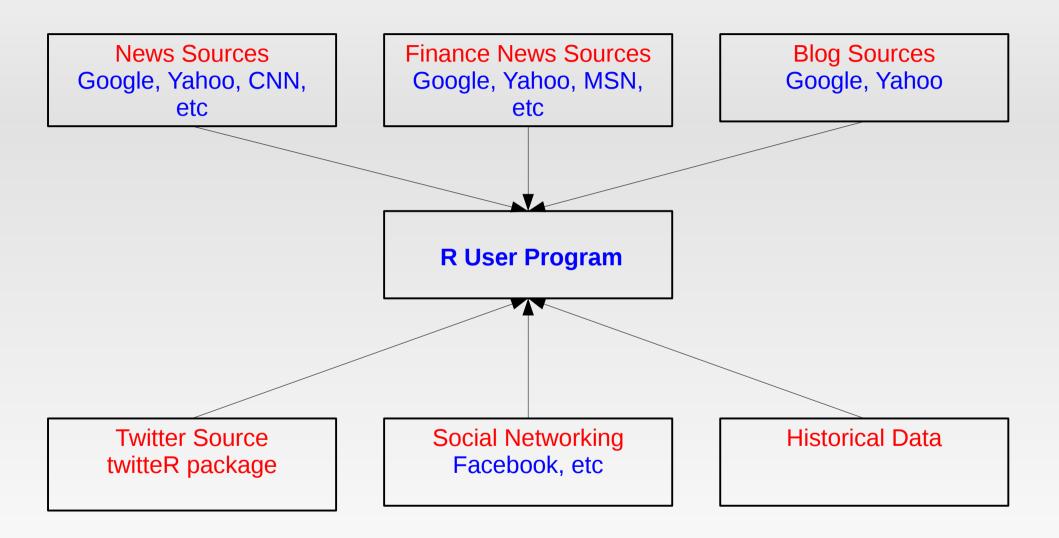
[1]	"On"	"an"	"exceptionally"	"hot"
[5]	"evening"	"early"	"in"	"July"
[9]	"a"	"young"	"man"	"came"
[13]	"out"	"of"	"the"	"garret"
[17]	"in"	"which"	"he"	"lodged"
[21]	"in"	"S."	"Place"	"and"
[25]	"walked"	"slowly,"	"as"	"though"
[29]	"in"	"hesitation,"	"towards"	"K."

Using tm Plugins

- The tm package has become very popular in a number of industries – academics, bioinformatics, linguistics, finance, actuary, news analysis, etc.
- Number of people have developed plugin for tm package.
 eg: tm.plugin.webmining, tm.plugin.sentiment, tm.plugin.dc (for distributed computing)

News Aggregation Using R Packages

How to gather news using R



Read News using R

Let's find out what's going on at SMU.

> corpus<-WebCorpus(GoogleNewsSource("Southern Methodist University")) > corpus[[1]] SMU's Engaged Learning Day inspires student projects Email: brekow@smu.edu Published: Monday, February 13, 2012

Headlines:

😕 亘 🗉 💿 an@vaio: ~/courses/AdvDM/TextMining > sapply(corpus, function(x) {attr(x, "Heading")}) [1] "SMU's Engaged Learning Day inspires student projects - The Daily Campus" [2] "Journalism graduate nominated for four Emmy awards - The Daily Campus" [3] "Senate candidate can't escape sports scandals - The Associated Press" [4] "SMU sends 18 to Midwest LGBT conference - Dallas Voice" [5] "Baylor School of Music Lyceum Series Welcomes Art Historian for Lecture -Baylor University" [6] "Brooke Reyes receives bachelor's degree from Southern Methodist Universit y - Your Houston News" [7] "Review: New York Baroque Dance Company | Dallas Bach Society - TheaterJon es Performing Arts News in North Texas" [8] "College notes: 02.13.12 - Corpus Christi Caller Times" [9] "In Albania, Can a US Diploma Deliver? - New York Times" [10] "Closure Takes Top Spot at 2012 Indie Game Challenge - MarketWatch (press release)" [11] "Senate candidate can't escape sports scandals - Houston Chronicle"

Financial News

 GoogleFinanceSource can be used to get latest news about any listed company

Example:

corpus <- WebCorpus(GoogleFinanceSource("NASDAQ:MSFT")) Retrives news stories from Google about Microsoft Corporation and creates a corpus.

corpus <- WebCorpus(YahooFinanceSource("MSFT")) Retrives news stories from Yahoo about Microsoft Corporation and creates a corpus.

corpus <- WebCorpus(TwitterSource("Microsoft"))</pre>

Retrives news stories from Twitter about Microsoft Corporation and creates a corpus.

Financial Data

 R package quantmod can be used to obtain latest stock market data.

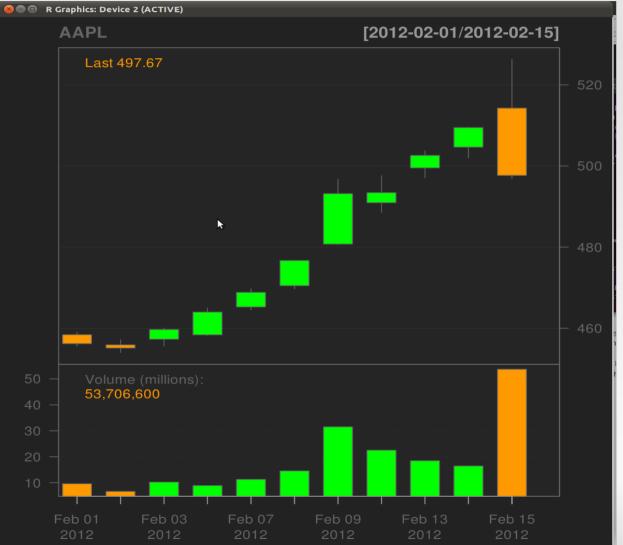


Chart of Apple (NASDAQ:AAPL) for month of February

Financial Data

Can also download data as a matrix

	😣 🗩 🗊 🛛 an@vaio: ~/development/mmsa/pkg							
	> last(AAPL,n=10)							
		AAPL.Open	AAPL.High	AAPL.Low	AAPL.Close	AAPL.Volume	AAPL.Adjusted	
	2012-02-02	455.90	457.17	453.98	455.12	6661100	455.12	
	2012-02-03	457.30	460.00	455.56	459.68	10235700	459.68	
ł	2012-02-06	458.38	464.98	458.20	463.97	8907600	463.97	
l	2012-02-07	465.25	469.75	464.58	468.83	11280600	468.83	
l	2012-02-08	470.50	476.79	469.70	476.68	14544700	476.68	
l	2012-02-09	480.76	496.75	480.56	493.17	31527700	493.17	
l	2012-02-10	490.96	497.62	488.55	493.42	22523900	493.42	
l	2012-02-13	499.53	503.83	497.09	502.60	18454300	502.60	
I	2012-02-14	504.66	509.56	502.00	509.46	16442800	509.46	
I	2012-02-15	514.26	526.29	496.89	497.67	53706600	497.67	
l	>							
I								

Financial News

Let's get news about Apple Corp.

> corpusAAPL <- WebCorpus(GoogleFinanceSource("NASDAQ:AAPL")) > sapply(corpusAAPL, function(x) {attr(x, "Heading")}) [1] "Apple's latest PC OS gets even more iOS-like" [2] "OS X 10.8 Mountain Lion Growls at the Masses" [3] "Apple Reverses, Stocks Top Out" [4] "Dominant Apple Looks To Cripple Rival Samsung" [5] "Amazon Declines on Morgan Stanley Downgrade" [6] "Apple's 4Q Global Tablet Market Share Falls To 57% From 64% In 3Q" [7] "Apple responds to furor over info-stealing apps" [8] "Apple Share Run Paused"

How to get News Sentiment

 How can we automatically analyze news and get a feel whether it conveys positive or negative sentiments.

News Sentiment

- R package tm.plugin.tags can help us.
- Contains large listing of positive and negative terms that can be used to tag news items.

```
> require("tm.plugin.tags")
> control <- list(stemming = TRUE)</pre>
> sample(tm_get_tags("Negativ", control = control), 10)
[1] "gloomi" "muddi"
                               "betray"
                                             "disprov"
                                                           "substitut"
                                             "undon"
 [6] "unnecessari" "cannib"
                               "hazi"
                                                           "burn"
> sample(tm_get_tags("Positiv", control = control), 10)
                             "spectacular" "respons"
 [1] "humbl"
                "fortun"
                                                           "promin"
 [6] "hilari"
             "glad"
                               "versatil" "pleasant"
                                                           "golden"
```

News Tagging

Let's see which terms are tagged as positive in news for Apple Corp.

> colr	<pre>> colnames(AAPL dtm reduced)[which(which pos==TRUE)]</pre>						
	"accept"	"accord"	"adjust"	"admit"	"agreement"		
[6]	"aid"	"allow"	"appeal"	"approach"	"asset"		
[11]	"attract"	"basic"	"benefit"	"board"	"bolster"		
[16]	"boost"	"call"	"common"	"confer"	"consent"		
[21]	"contact"	"content"	"correct"	"credit"	"deal"		
[26]	"discuss"	"entertain"	"enthusiasm"	"establish"	"excel"		
[31]	"fair"	"familiar"	"favor"	"forward"	"free"		
[36]	"fresh"	"friend"	"gain"	'game"	"glow"		
[41]	"gold"	"grace"	"hand"	"haven"	"health"		
[46]	"help"	"hit"	"home"	"hope"	"hug"		
[51]	"impress"	"inform"	"joke"	"keen"	"kid"		
[56]	"law"	"lead"	"legal"	"live"	"loyal"		
[61]	"main"	"major"	"matter"	"meet"	"offer"		
[66]	"offset"	"partner"	"pass"	"patient"	"permit"		
[71]	"plain"	"popular"	"premium"	"prime"	"pro"		
[76]	"profit"	"progress"	"protect"	"real"	"regard"		
[81]	"respect"	"return"	"rich"	"robust"	"round"		
[86]	"safe"	"serious"	"share"	"smile"	"smitten"		
[91]	"sought"	"special"	"stand"	"straight"	"success"		
[96]	"suit"	"support"	"talent"	"thank"	"tradition"		
[101]	"travel"	"true"	"truth"	"understand"	"uphold"		

News Tagging

Let's see which terms are tagged as negative in news for Apple Corp.

I	<pre>> colnames(AAPL dtm reduced)[which(which neg==TRUE)]</pre>						
	[1]	"argument"	"attack"	"avoid"	"bankrupt"	"bar"	
	[6]	"barrier"	"beat"	"bit"	"blame"	"block"	
	[11]	"board"	"boot"	"box"	"break"	"broke"	
	[16]	"cancel"	"cancer"	"chaotic"	"close"	"combat"	
	[21]	"commit"	"compel"	"competitor"	"complaint"	"concern"	
	[26]	"contend"	"cost"	"covert"	"critic"	"cross"	
1	[31]	"crude"	"cut"	"danger"	"deal"	"death"	
1	[36]	"default	"deficit"	"difficult"	"disrupt"	"doubt"	
1	[41]	"drive"	"drop"	"engulf"	"evil"	"fail"	
1	[46]	"fall"	"fear"	"fed"	"fight"	"fire"	
1	[51]	"flaw"	"hand"	"hard"	"help"	"hit"	
1	[56]	"hoard"	"hole"	"hot"	"hurt"	"kill"	
1	[61]	"lack"	"limit"	"lone"	"lose"	"loser"	
1	[66]	"loss"	"lost"	"low"	"lower"	"matter"	
1	[71]	"mean"	"mischief"	"mix"	"object"	"odd"	
	[76]	"pass"	"poor"	"pretend"	"push"	"quit"	
1	[81]	"ration"	"reject"	"retreat"	"rival"	"run"	
	[86]	"scare"	"sever"	"short"	"sick"	"spite"	
1	[91]	"spot"	"stick"	"stress"	"struck"	"succumb"	
1	[96]	"suffer"	"threaten"	"try"	"undo"	"upset"	
1	[101]	"wait"	"war"	"withheld"	"woe"		

Problems with first approach

1.Large number of terms – some irrelevant to stock price prediction.

- 2. The entire news story is not relevant for us. We need short meaningful ideas.
- **3**.Need to explore some new way to get relevant information.

4.Much of the news story consists of analysis, comparison, past performance reviews => which is not really useful for present analysis.

Using just the Headlines

- Headlines are more meaningful and relevant.
- Terms can be better mined.
- Can give weights to terms based on the fluctuations they cause. For example, if there is a rise of 5% in stock price, I will give a weight of 5% to each of the positive terms.
- The weights will average out over time and for various companies

Headlines Analysis

Used 100 news articles to extract headlines for AAPL

	s 💷 an@vaid	o: ~/developm	ent/mmsa/pk	8			
	colnames(dtm_re 1] "agreement"		h(which_pos≕ "art"	=TRUE)] "award"	"basic"	"board"	ĥ
	7] "buy" 3] "favor"	"correct" "hand"	"deal" "home"	"discuss" "join"	"entertain" "lead"	"eye" "legal"	
[1	9] "protect"	"round"	"share"	"suit"	"uphold"		
1	colnames(dtm_re 1] "antitrust"	"attack"	"bankrupt"	"block"	"blow"	"board"	
	7] "cheap" 3] "fix"	"complaint" "hand"	"deal" "hoard"	"delay" "limit"	"drop" "lone"	"fall" "lose"	
	9] "lower" 5] "war"	"pound" "wrong"	"reject"	"rival"	"skirmish"	"vie"	
>	-	2					
							н
L							

More negative words, which are strong. Stock is likely to move downward.

Headlines Analysis

Possible sentiment metrics:

Ratio of Number of Positive to Negative Terms:

Sentiment = Number of Positive / Number of Negative terms

Weighting Scheme:

Find weights for positive and negative terms using long term average. For example, w(bankrupt) = -0.10, w(profit)=0.03, etc Using this, compute average weight of all terms and predict stock price movement.

Headlines Analysis

Project Plan:

- Gather News Terms for day x and stock prices for day x+1 for a chosen few companies for various sectors – tech, financial, energy, banks, etc.
- Find correlation between ratio of positive to negative terms to stock price change.
- Assign weights to terms based on direction and amount of change i.e. if price goes up, assign weight to positive terms and vice versa.
- Use the weights and correlation to predict stock prices for test dataset.

Conclusion

- Text Mining is perhaps the most important and ubiquitous area of data mining.
- Ever growing mass of data needs to be processed efficiently and analyzed.
- Text data presents unique challenges.
- Need for high performance tools and faster algorithms.
- Need for automated information extraction from vast text resources.
- I presented a case study of automatically extracting sentiment from news and using it for stock market prediction.

References

- 1. Ingo Feinerer (2012). tm: Text Mining Package. *R* package version 0.5-7.1
- 2. Ingo Feinerer, Kurt Hornik, and David Meyer (2008). **Text Mining Infrastructure in R.** Journal of Statistical Software 25/5.
- **3**. Theussl, S. et al (2010). **Distributed Text Mining with tm.** *R Finance Conference.*
- 4. Theussl, S. et al (2010). **Do Media Sentiments Reflect Economic Indices.** *Statistical Learning Notes, Vienna University of Economics and Business.*
- 5. Ingo Feinerer. An introduction to text mining in R. *R News*, 8(2):19-22, October 2008.

References

- 6. Yu, W-B. et al (2007). A theoretical framework integrating Text Mining and Energy Demand Forecasting. *Intl Journal of Electronic Business Management* 5(3) 211-224
- 7. W. Zhang and S. Skiena. **Trading strategies to exploit blog and news sentiment**. In The 4th International AAAI Conference on Weblogs and Social Media, 2010.
- 8. Breen, J.(2011). R by example: mining Twitter for consumer attitudes towards airlines. Boston Predictive Analytics MeetUp Presentation.
- 9. Kowalczyk, W.(2006). Introduction to Text Mining. Machine Learning Day www.cs.vu.nl
- **10**.Sanderson, R.(2008). **COMP527 Data Mining.** *Department of Computer Science, University of Liverpool.*

References

11.Grobelnik, M. Text Mining Tutorial. http://ailab.ijs.si/marko_grobelnik/

12.Ananiadou, S. What is Text Mining. National Center for Text Mining www.nactem.ac.uk

13.Wikipedia, Text Analytics http://en.wikipedia.org/wiki/Text_analytics