CLUSTERING DATA STREAMS

Hadil Shaiba February 27, 2012 Southern Methodist University

DATA STREAMS

- Definition:
 - Tuples of data that arrive in an ordered and a continuous manner
 - Tuples = <a1, a2,...., am>
- Traditional data mining algorithms are not efficient
 - Algorithms for data streams are available

ISSUES

- Streams are of an infinite size
 - Handle limited size of memory
- Data arrives continuously
 - Clustering is processed in a single pass
 - Algorithm shall be fast enough to handle the fast arrival of streams
 - Changes might happen over time
 - Traditional algorithms do not deal with this type of data

EXAMPLES

- Pattern recognition
 - Recognizing the relations between words.
- Data analysis
 - Tracking the behavior of stocks
- Image processing
 - Recognizing faces
- Knowledge discovery
 - Tracking the hurricanes using data received from sattelites

CLUSTERING DATA STREAMS

• Traditional Clustering Algorithms:

- Unsupervised learning- groups are created based on certain measurements
 - Ex. Distance between attributes
- Several passes over the dataset is required for final groups generation
- Clustering algorithms:
 - K-means, Hierarchical, PAM clustering.
- New algorithms for clustering data streams:
 - On-line:
 - Algorithms that produce an efficient summery of the data in real-time
 - Off-line:
 - Summarized data are an input to traditional clustering algorithms
 - Ex. K-means

PERFORMANCE

• Measuring the performance:

- Number of passes over the tuple
- The total time the algorithm takes to produce output

ALGORITHMS

• BIRCH:

- Converts streams into a tree that contains the information needed for clustering
- STREAM:
 - Uses **Time Windows** to divide streams into windows
- CluStream:
 - Summarizes streams into **micro-clusters** to deal with memory limitations

• D-Stream:

- Converts streams into micro-clusters using **Density based**
- Produce arbitrarily shapes
- Protects against outliers

Source: Mining Massive Data Streams by Michael Hahsler

MICRO-CLUSTER CONT'D

- Temporal extension of cluster feature (CF) vector
 - Produces a statistical summarization of the clusters
- Cluster feature (CF):

 $CF = (N, \overrightarrow{LS}, SS)$

- Summarization of the cluster where:
 - N: number of points
 - LS: linear sum of the N points
 - SS: square sum of the N points
- If two clusters are joined the new cluster will look as follows:

$$CF_1 + CF_2 = (N_1 + N_2, \overrightarrow{LS}_1 + \overrightarrow{LS}_2, SS_1 + SS_2)$$

MICRO-CLUSTER CONT'D

- Extends the cluster feature by adding summaries about the time stamps
- It looks as follows:

 $(\overrightarrow{CF2^{*}},\overrightarrow{CF1^{*}},CF2^{t},CF1^{t},n). \ \overrightarrow{CF2^{*}},\overrightarrow{CF1^{*}}$

• Where,

•
$$\overrightarrow{CF2^{*}} = SS$$

• $\overrightarrow{CF1^{*}} = LS$

• $CF2^t$ = sum of squares of time stamps

• $CF1^t$ = sum of time stamps

B-TREE

CF TREE

- B-Tree, with a branch factor B, threshold T and L maximum number of entries in a leave node
- Threshold T can be adjusted so leaves can have more points.

BIRCH

- One of the first algorithms that deal with large data
- Hierarchal and incremental clustering
- Handles outliers
- Assumes we have limited size of memory
- Requires one scan to the database
- Builds a CF tree
 - carries a summary of the data
 - Searched from top to down
 - Leaves contain clusters that are created from the summary
- Complexity o(n)
- Worst case complexity o(n^2)
 - So many adjustments of threshold

ALGORITHM

- Create initial CF tree based on memory limits
- For each element find the best leaf cluster
 - 1. If less than threshold
 - 1. Add element to the leaf cluster
 - 2. update CF triple
 - Otherwise
 - 1. If there is enough place to insert element
 - Insert element as a new cluster
 - 2. Update CF triple
 - Otherwise
 - 1. Split leaf node and redistribute CF features

ISSUES

- Each entry in the CF tree has a limited size which might not be the case
- The order of the input can affect the results in a negative way
- New and old entries have the same importance

CLUSTREAM

- Uses time stamps
- Snapshots of certain time stamps are taken
 - Different orders
 - Minimum: 1
 - Maximum: log_α(T)
 - Only the last $(\alpha^{1})+1$ snapshots are stored
- Micro-clusters
 - produced for each snapshot
 - Set of summarized statistics
 - Stored in a time following a pyramidal pattern

Snapshots order	Snapshots (clock times)
0	55 54 53 52 51
1	$54\ 52\ 50\ 48\ 46$
2	52 48 44 40 36
3	48 40 32 24 16
4	48 32 16
5	32

- Ex. $\alpha = 2$ and $\iota = 2$
- Number of snapshots for each order:

•
$$(2^2)+1=5$$

CLUSTREAM CONT'D

- Uses the same concept of k-means and nearest neighbor algorithms
- Q micro-clusters are stored at a certain time representing the current snapshot
 - M_1,\ldots,M_q where each M has an id.
 - If Ma and Mb are merged:
 - List of ids is created
- Different clusters are produced when new streams arrive
- If clock time is divisible by (α^{1})
 - Micro-cluster is stored on disk
 - old micro-clusters are deleted if they exceed certain threshold

Algorithm

<u>CluStream Algorithm</u>:

- 1. Off-line process starts with q initial set of micro-clusters
- 2. On-line process goes through each new data point x
 - 1. Find for x the closest micro-cluster c
 - 2. If x is closer to c than a threshold δ
 - 1. update x to absorb c
 - Otherwise
 - 1. create a new micro-cluster for c with a unique id
 - 2. If any current micro-cluster is considered as outlier
 - 1. Delete the micro-cluster
 - Otherwise
 - 1. Merge two clusters

Algorithm Cont'd

- When creating a new cluster we need to get rid of an older cluster to save space
- Algorithm to find outliers:
 - 1. Estimate the average timestamp of the last m arrivals in each micro-cluster.
 - 2. If all time stamps are recent and above threshold δ
 - 1. Merge two closest micro-clusters
 - 2. Create an id list of the two micro-clusters ids
 - Otherwise
 - 1. Delete micro-cluster with the least resent time stamp

ADVANTAGES

- Very flexible for real time transactions
- Pyramidal time window guarantees efficient time and space

CONCLUSION

- There are different algorithms available for data streams
- Choosing the algorithm depends mainly on the type of application
 - Ex. D-Stream is good for finding arbitrarily shapes
- Clustering data streams is gaining a lot of importance and a lot of research is done on improving these algorithms to apply them on real time applications

RESOURCES

- <u>http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp</u> <u>410-414.pdf</u>
- Aggarwal, C. C., Han J., Wang, J. & Yu, P. S. (2003). A Framework for Clustering Evolving Data Stream. <u>In Proc. of</u> <u>the 29th VLDB Conference</u>.
- Barbara, D. (2003). Requirements for Clustering Data Streams. <u>SIGKDD Explorations, 3 (2)</u>, 23-27.
- Ester M., Kriegel H.-P., Sander J. & Xu X (1998). Clustering for Mining in Large Spatial Databases. <u>Special Issue on Data</u> <u>Mining, KI-Journal, ScienTec Publishing, No. 1</u>.
- <u>http://cran.r-project.org/web/packages/birch/birch.pdf</u>
- Margaret, H. D. (2003). "Data Mining Introduction and Advanced Topics."
- Michael, H. (2012). "Mining Massive Data Streams." <u>http://michael.hahsler.net/SMU/8331/slides/datastream/datast</u> <u>ream.pdf</u>