Clustering Applications in Biometrics

Biometric Works

John Howard

SMU Biometric Works Laboratory

Agenda

- Clustering in Iris Recognition
 - Binning
 - Hadoop and Biometric Databases
 - Pattern Recognition
- Clustering in Keystroke Dynamics
 - Three feature clustering

- Steps:
 - Locate Pupil
 - Locate Limbic Boundary
 - Generate Template
 - Compare Templates

Pupil Location

and dilation.

Pupil Location

• Pupil Selection:

- Criteria:
 - Size
 - Eccentricity
 - Roundness

Limbic Location

• Given an image and a pupil location

• "Unwrap", filter, find straightest line

Template Generation

Given an image, a pupil location, and a limbic location

• Unwrap and contrast adjust

Template Generation

• Feature Extraction

- What features are algorithm specific (and highly proprietary)
- Extracted using feature kernels and convolution (<u>wiki</u>)

Template Generation

- Get a matrix of convolution responses
- Threshold and convert to binary

Template Comparison

- Every iris image becomes a template
 - Small
 - Easier to compare
 - Faster
- Comparing two templates = a distance metric
- Hamming Distance:

Template Comparison

• Imposter Comparisons:

 Should have a fractional Hamming distance of ~.5

Template Comparison

• Genuine Comparisons:

- Should have much lower fractional Hamming distance
- Can model both as a normal distribution

• Binning

Who is this?

Search all these

 Binning reduces the amount of templates you have to search (prune the search space)

False no-match if wrong bin is searched

- Feature Based Binning (Mehrotra, 2010)
 - 27 features of each template identified
 - Center of gravity
 - Area of black pixels
 - Etc.
 - Cluster an existing database based on these features
 - When a new probe image is introduced it gets "fuzzily" assigned to a cluster
 - The template comparison routine only searches hose clusters

- Similarity Based Binning (Becker, Potts, 2007)
 - Don't bin on features
 - Bin on a similarity metric

Hadoop and Iris Recognition

- Trost, 2010
- HDFS provides a framework for distribution, and redundancy of database
- Mahout/MapReduce to find clusters to reduce search space
- {Key, Value} stored in redundant SequenceFiles to allow for parallel search.

Clustering to find patterns (pattern recognition)

- Use sliding window of size k
- Generate 36,000 row vectors
- Cluster using k-means or k-medoids using a high number of clusters

- Resulting Clusters should be most common patterns in the image
- Can then use these to generate kernels that get extremely high responses

- Most common pattern not necessarily the most interesting
- Need to filter the vectors
 - Must have a certain % change

- Must be normalized to the same starting value

Keystroke Dynamics

• Identify people based on their typing patterns

Keystroke Dynamics

• Build up 3 dimensional matrices of timing information:

Flight time from C-B Down time on B Flight time from B-A

- Plot in 3D space
- Cluster (show example)

Clustering Applications in Biometrics

- Biometrics and Clustering are closely related
- Many applications across the field
- More uses in the future
- Question?

References

- Trost, J. Hadoop for Large Scale Biometric Databases. Hadoop Summit 2010.
- Becker, G. and Potts, M. Non-metric Biometric Clustering. Biometric Consortium Conference, 2007.
- Mehrotra, H., et. al. Feature Level Clustering of Large Biometric Databases.