library(seriation)
We use the Ruspini data set with 4 clusters
data("ruspini", package="cluster")
d <- dist(ruspini)
Look for dark blocks (small distances) along the diagonal
pimage(d)
Ruspini has 4 clusters but we use incorrectly 10!
l <- kmeans(ruspini, 10)$cluster
dissplot(d, method = NA, labels = l)
dissplot(d, labels = l)
The plot reassembles the four clusters # Using too few clusters
l <- kmeans(ruspini, 3)$cluster
dissplot(d, labels = l)
dissplot(d, labels = l, zlim= c(0,40))
Note that one cluster consists of 2 clusters (two dark blocks)!
? seriate
)Gradient measure
dissplot(d, labels= l, method = list(intra="ARSA", inter="ARSA"))
Hamiltonian path
dissplot(d, labels= l, method = list(intra="TSP", inter="TSP"))
Hierarchical clustering
dissplot(d, labels= l, method = list(intra="HC_average", inter="HC_average"))
dissplot(d, labels= l, method = list(intra="OLO", inter="OLO"))
Scaling and others
dissplot(d, labels= l, method = list(intra="MDS", inter="MDS"))
dissplot(d, labels= l, method = list(intra="R2E", inter="R2E"))
dissplot(d, labels= l, method = list(intra="Spectral", inter="Spectral"))
dissplot(d, labels= l, method = list(intra="Spin", inter="Spin"))
dissplot(d)
dissplot(d, zlim=c(0,40))
dissplot(d, col=bluered(100, bias=1))
see ?VAT
VAT(d)
iVAT(d)
iVAT redefines the distance between two objects as the minimum over the largest distances between two concecutive objects on all possible paths between the objects