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Course organization

Textbook: J. E. Hopcroft, R. Motwani, and
J. D. Ullman Introduction to Automata The-
ory, Languages, and Computation, Second Edi-
tion, Addison-Wesley, New York, 2001.

Sections: There are two parallel sections. The
material covered by each instructor is roughly
the same. There are four common assign-
ments and a common final exam. Each section
will have different midterm tests.

Assignments: There will be four assignments.
Each student is expected to solve the assign-
ments independently, and submit a solution for
every assigned problem.



Examinations: There will be three midterm
examinations, each lasting thirty minutes and
covering the material of the most recent as-
signment. The final examination will be a three-
hour examination at the end of the term.

Weight distribution:

Midterm examinations: 3 x 15% = 45%,
Final examination: = 55%.

e At the end of the term, any midterm exam
mark lower than your final exam mark will be
replaced by your final exam mark. To pass
the course you must submit solutions for all
assignhed problems.



Important: COMP 238 and COMP 239 are

prerequisites. For a quick refresher course,
read Chapter 1 in the textbook.

e Spend some time every week on:

(1) learning the course content,

(2) solving exercises.

e Visit the course web site reqularly for up-
dated information.



Motivation

e Automata = abstract computing devices

e Turing studied Turing Machines (= comput-
ers) before there were any real computers

e \We will also look at simpler devices than
Turing machines (Finite State Automata, Push-
down Automata, ... ), and specification means,
such as grammars and regular expressions.

e NP-hardness = what cannot be efficiently
computed



Finite Automata

Finite Automata are used as a model for

e Software for designing digital cicuits

e Lexical analyzer of a compiler

e Searching for keywords in a file or on the
web.

e Software for verifying finite state systems,
such as communication protocols.



e Example: Finite Automaton modelling an
on/off switch

Push
Start
) ()
Push

e Example: Finite Automaton recognizing the
string then



Structural Representations

These are alternative ways of specifying a ma-
chine

Grammars: A rule like E = E + FE specifies an
arithmetic expression

o Lineup = Person.Lineup

says that a lineup is a person in front of a
lineup.

Regular Expressions: Denote structure of data,
e.d.

> [A-Z] [a-z]*[] [A-Z] [A-Z]°
matches Ithaca NY
does not match Palo Alto CA

Question: What expression would match
Palo Alto CA



Central Concepts

Alphabet: Finite, nonempty set of symbols
Example: ¥ = {0,1} binary alphabet

Example: >~ = {a,b,c,...,z} the set of all lower
case letters

Example: The set of all ASCII characters

Strings: Finite sequence of symbols from an
alphabet 22, e.g. 0011001

Empty String: The string with zero occur-
rences of symbols from 2

e [ he empty string is denoted ¢
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Length of String: Number of positions for
symbols in the string.

lw| denotes the length of string w
|0110| = 4,le| =0

Powers of an Alphabet: % = the set of
strings of length k with symbols from >

Example: >~ = {0,1}
>1=1{01}

>2 = {00,01,10,11}
>0 = {¢}

Question: How many strings are there in >3
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The set of all strings over ¥ is denoted X*
>*=3%uxluxz?u...

Also:

>tT=xluxz?usz3u...

>* =T U{e}

Concatenation: If =z and y are strings, then
xy is the string obtained by placing a copy of
y immediately after a copy of «x

T =aiap...a;,y =biby...b;

Ty = a1an...a;b1bp...b;

Example: £ = 01101,y = 110, zy = 01101110

Note: For any string x

IrE — eErX — X
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Languages:

If > is an alphabet, and L C >*
then L is a language

Examples of languages:
e [ he set of legal English words
e [ he set of legal C programs

e [ he set of strings consisting of n 0's followed
by n 1's

{¢,01,0011,000111,...}
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e [ he set of strings with equal number of O's
and 1's

{¢,01,10,0011,0101, 1001,...}

e Lp = the set of binary numbers whose value
IS prime

{10,11,101,111,1011,...}

e The empty language

e The language {e} consisting of the empty
string

Note: () # {¢}
Note2: The underlying alphabet X is always

finite
14



Problem: Is a given string w a member of a
language L7

Example: Is a binary number prime = is it a
meber in Lp

Is11101 € Lp? What computational resources
are needed to answer the question.

Usually we think of problems not as a yes/no
decision, but as something that transforms an
input into an output.

Example: Parse a C-program = check if the
program is correct, and if it is, produce a parse
tree.

Let Ly be the set of all valid programs in prog
lang X . If we can show that determining mem-
bership in Ly is hard, then parsing programs
written in X cannot be easier.

Question: Why?
15



Finite Automata Informally

Protocol for e-commerce using e-money

Allowed events:

1. The customer can pay the store (=send
the money-file to the store)

2. The customer can cancel the money (like
putting a stop on a check)

3. The store can ship the goods to the cus-
tomer

4. The store can redeem the money (=cash
the check)

5. The bank can transfer the money to the
store

16



e-commerce

The protocol for each participant:

Star transter

e T
(a) Store @

redeem transfer

@)

cancel
pay cancel
T T redeem transfer
Start Start

(b) Customer (c) Bank

17



Completed protocols:

cancel
Star

(a) Store

ship. redeem, transfer,

pay, cancel
i

Start

(b) Customer

pay cancel pay cancel pay cancel

.

C redeemCtransfer @

pay,cancel pay,cancel pay,cancel
pay, ship

®

pay,redeem, pay,redeem,

cancel cancel, ship cancel, ship
P, (( B0
ship redeem  transfer
Start
(c) Bank

18



The entire system as an Automaton:

19



Deterministic Finite Automata

A DFA is a quintuple

A=(Q,X,9,q0,F)

e () is a finite set of states

e X is a finite alphabet (=input symbols)
e § is a transition function (q,a) — p

e o € @ is the start state

e F'C () is a set of final states

20



Example: An automaton A that accepts
L ={x01y : z,y € {0,1}*}

The automaton A = ({90,91,92},{0,1},6,90,{q1})
as a transition table:

O |1
— 40 || 92 | 90
*q1 | 491 | 91
a2 || 92 | 91

The automaton as a transition diagram:
1 0
Sat ) o ¥ 1
—(@——(G——(®) ) ox
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An FA accepts a string w = aqas---apn if there
IS a path in the transition diagram that

1. Begins at a start state
2. Ends at an accepting state

3. Has sequence of labels ajas---an

Example: The FA

Start _». 0 C 1

accepts e.g. the string 01101

22



e [ he transition function é can be extended
to & that operates on states and strings (as
opposed to states and symbols)

Basis: 6(q,e) =¢q

Induction: 6(q,za) = 6(8(q,x),a)

e Now, fomally, the language accepted by A
IS

L(A) = {w : (g0, w) € F}

e [ he languages accepted by FA:s are called
regular languages

23



Example: DFA accepting all and only strings
with an even number of O's and an even num-
ber of 1's

O |1
*— 40 | 92 | 91
d1 | 943 | 90
q2 || 90 | 43
q3 || 91 | 92
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Example

Marble-rolling toy from p. 53 of textbook

>

x
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A state is represented as sequence of three bits
followed by r or a (previous input rejected or
accepted)

For instance, 010a, means
left, right, left, accepted

Tabular representation of DFA for the toy

A B

— 000r | 100r | O11r
*000a | 1007 | O11r
*001a | 1017 | O00a

0107 | 1107 | O01la
*010a || 1107 | O01la
Ollr | 1117 | O10a
100r || O10r | 111r
*100a || 0107 | 1117
1017 || O11r | 100a
*101a | O11r | 100a
1107 || O00a | 101a
*110a || 0O00a | 101a
1117 || OOla | 110a
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Nondeterministic Finite Automata

A NFA can be in several states at once, or,
viewded another way, it can “guess’” which
state to go to next

Example: An automaton that accepts all and
only strings ending in 0O1.

Start _». 0 C 1

Here is what happens when the NFA processes
the input 00101

b@—= % ——= % —=%—>%

I N

%4 Oy %

(stuck) \ . \

(stuck)

%
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Formally, a NFA is a quintuple

A — (Q? Z? 57 q07 F)

e () is a finite set of states
e > is a finite alphabet

e 0 is a transition function from @ x > to the
powerset of @

® go € Q is the start state

e F"C ( is a set of final states

28



Example: The NFA from the previous slide is

({90, 91,92},1{0,1},6,90,{q2})

where § is the transition function

0 1
—qo | {90,491} | {90}
q1 | 0 {go}
*dD @ Q)

29



Extended transition function 4.
Basis: 6(q,¢) = {q}

Induction:

0(g,za) = |J d(p,a)

ped(q,z)

Example: Let’'s compute 6(gg,00101) on the
blackboard

e Now, fomally, the language accepted by A is

L(A) = {w : §(qo,w) N F # 0}

30



Let's prove formally that the NFA

Start _». 0 C 1

accepts the language {z01 : z € =*}. We'll do
a mutual induction on the three statements

below
0. we ¥ = qp € 6(qp,w)
1. g1 € 6(qp, w) & w = 20

2. ¢ € 4(qp,w) & w =201

31



Basis: If lw| = 0 then w = e¢. Then statement
(0) follows from def. For (1) and (2) both
sides are false for ¢

Induction: Assume w = za, where a € {0, 1},
|x| = n and statements (0)—(2) hold for x. We
will show on the blackboard in class that the
statements hold for xa.
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Equivalence of DFA and NFA

e NFA's are usually easier to “program” in.

e Surprisingly, for any NFA N thereisa DFA D,
such that L(D) = L(N), and vice versa.

e [ hisinvolves the subset construction, an im-
portant example how an automaton B can be
generically constructed from another automa-
ton A.

e Given an NFA

N = (QNazacsN?CIO)FN)
we will construct a DFA

D = (QD, 275D7 {qO}ﬂFD)
such that

L(D) = L(N)

33



T he details of the subset construction:

o Qp={5:5CQn}

Note: |Qp| = 2/9N~I although most states in
Qp are likely to be garbage.

o 'p={SCQQN:SNFyF*0D}

e Forevery SCQpy and a € 2,

5D(S7 CL) — U 5N(p7 CL)
peS

34



Let's construct ép from the NFA on slide 27

0] 1
00 )
— {q0} | {90,491} | {90}
{q1} ]| @ {q2}
*{qo} || @ )

{g0,q1} || {90,491} | {90, a2}
*{q0,92} || {g0,91} | {q0}
*{q1,q2} | 0 {q2}

*x{q0,91,92} || {90,91} | {90, 92}
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Note: The states of D correspond to subsets
of states of N, but we could have denoted the
states of D by, say, A — F just as well.

O |1

Al Al A

— B | E | B
Cl|A|D
*D || Al A
F|FE|F
xF | E | B
*G || A| D
*xH | E | F
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We can often avoid the exponential blow-up
by constructing the transition table for D only
for accessible states S as follows:

Basis: S = {qp} is accessible in D

Induction: If state S is accessible, so are the
states in Uges 0p(S,a).

Example: The “subset” DFA with accessible
states only.

Start h ‘/%
e

37



Theorem 2.11: Let D be the “subset” DFA
of an NFA N. Then L(D) = L(N).

Proof: First we show on an induction on |w|
that

op({go}, w) = dn(q0, w)

Basis: w = €. The claim follows from def.

38



Induction:

Sp({ao},7a) € 5p(5p({a0}, z), a)

in. .
= 5p(6n(q0,2), a)

t
= J  on(pa)
pESN(QO,fU)

def =
= on(qo,za)

Now (why?) it follows that L(D) = L(N).

39



Theorem 2.12: A language L is accepted by
some DFA if and only if L is accepted by some
NFA.

Proof: The “if”’ part is Theorem 2.11.

For the “only if" part we note that any DFA
can be converted to an equivalent NFA by mod-
ifying the 6p to o) by the rule

e If 5p(q,a) = p, then dx5(q,a) = {p}.

By induction on |w| it will be shown in the
tutorial that if §p(qg,w) = p, then dx(qg, w) =

{r}.

The claim of the theorem follows.

40



Exponential Blow-Up

There is an NFA N with n+ 1 states that has
no equivalent DFA with fewer than 2™ states

0,1

Star@il OiQil.

L(N) ={zlcocz---cp:xz € {0,1}" ¢; € {0,1}}

Suppose an equivalent DFA D with fewer than
2" states exists.

D must remember the last n symbols it has
read.

There are 2™ bitsequences aias---an

3 q,a1a2---an,biba---bn 1 q € d5(q0, araz - - - an),
q € on(qo,b1b2 -~ bn),
al&Q"'an#ble'”bn
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Case 1:

1a2...an
Obs - - - by

Then g has to be both an accepting and
nonaccepting state.

Case 2:

bl"'bi—lobz’—l-l"'bn

Now Sn (g0, a1+ a;—1lajyq---an0™1) =
on(qo, by -+ b;—10b;41 -+ b0 1)

and 6n(qo, a1+ a;—1la;41---an0"1) € Fp

On(qo,b1 -+ b;_10b;41 - b0~ 1) ¢ Fpy

42



FA’s with Epsilon-Transitions

An e-NFA accepting decimal numbers consist-
ing of:

1. An optional 4+ or - sign

2. A string of digits

3. a decimal point

4. another string of digits

One of the strings (2) are (4) are optional

01,...9 01,..9

v OB

- 01,..9 @—8>
01,...9
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Example:

e-NFA accepting the set of keywords {ebay, web}
o N o)
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An e-NFA is a quintuple (Q, X, 9, qp, F') where §
is a function from @ x X U {e} to the powerset

of Q.

Example: The e-NFA from the previous slide

E = ({qO7Q17 © '7Q5}7 {'7 +7 T 07 17 e 79} 57 q0; {Q5})

where the transition table for ¢ is

€ —+,- | . 0,...,9
— qo éQ1} {a1} | 0 )

q1 ) {a2} | {q1,94}
a2 | 0 ) ) {q3}
q3 | {as} | 0 ) {q3}
qs | 0 ) {a3} | 0
xqs || 0 ) ) )
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ECLOSE

We close a state by adding all states reachable
by a sequence ee---¢€

Inductive definition of ECLOSE(q)
Basis:

q € ECLOSE(q)

Induction:

p € ECLOSE(q) and r € 6(p,e) =
r € ECLOSE(q)

46



Example of e-closure
/C S
@) /

For instance,

ECLOSE(1) ={1,2,3,4,6}

&)

@
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e Inductive definition of § for e-NFA's

Basis:

6(q,€) = ECLOSE(q)

Induction:

6(q, xa) = U ECLOSE(p)
p€d(6(g,z),a)

Let’'s compute on the blackboard in class
6(qp,5.6) for the NFA on slide 43
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Given an e-NFA

bE = (QE) Za 5E7 q0, FE)

we will construct a DFA

D = (QD) Za5D7QD7FD)
such that
L(D) = L(E)

Details of the construction:

e Qp={S:5C Qg and S = ECLOSE(S)}
e gp = ECLOSE(qp)

e Fp={S:5€Q@Qpand SN Fg # 0}

e 6p(S,a) =
| J{ECLOSE(p) : p € 6(¢,a) for some ¢t € S}

49



Example: e-NFA E

01,...9 01,...9

50



Theorem 2.22: A language L is accepted by
some e-NFA FE if and only if L is accepted by
some DFA.

Proof: We use D constructed as above and
show by induction that 6p(qg, w) = dg(gp,w)

Basis: 5(qo,€) = ECLOSE(q0) = qp = 0(gp,€)
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Induction:

0p(q0, za) =

U

p€dp(dp(qo,x),a)

U

p€dép(Oplap,x),a)

U

pedp(gp,za)

op(qp,za)

ECLOSE(p)

ECLOSE(p)

ECLOSE(p)
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Regular expressions

A FA (NFA or DFA) is a “blueprint” for con-
tructing a machine recognizing a regular lan-
guage.

A regular expression is a ‘‘user-friendly,” declar-
ative way of describing a regular language.

Example: 01* 4+ 10*

Regular expressions are used in e.g.

1. UNIX grep command

2. UNIX Lex (Lexical analyzer generator) and
Flex (Fast Lex) tools.
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Operations on languages

Union:
LUM={w:welLorweM}
Concatenation:
LM=Aw:w=zxy,xe€ L,ye M}
Powers:

IO ={e}, L' =1L, LFtl =L Lk
Kleene Closure:

o0 .
L= J L'
1=0

Question: What are 0°, (¢, and ¢*
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Building regex’s

Inductive definition of regex’s:

Basis: € is a regex and 0 is a regex.

L(e) = {e}, and L(0) = 0.

If a € 2, then a is a regex.

L(a) = {a}.
Induction:

If £ is a regex’s, then (FE) is a regex.
L((E)) = L(E).

If £ and F' are regex’'s, then E + F' is a regex.
L(E+ F)=L(E)UL(F).

If £ and F are regex's, then E.F is a regex.
L(E.F") = L(E).L(F).

If £ is a regex’'s, then E* is a regex.
L(E*) = (L(E))™.
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Example: Regex for

L={we{0,1}*: 0 and 1 alternate in w}

(01)* + (10)* + 0(10)* 4+ 1(01)*

or, equivalently,

(e+1)(01)*(e +0)

Order of precedence for operators:

1. Star
2. Dot
3. Plus
Example: 01* 4+ 1 is grouped (0(1)*) + 1
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Equivalence of FA’'s and regex’s

We have already shown that DFA's, NFA's,
and e-NFA’s all are equivalent.

To show FA's equivalent to regex’s we need to
establish that

1. For every DFA A we can find (construct,
in this case) a regex R, s.t. L(R) = L(A).

2. For every regex R there is a e-NFA A, s.t.
L(A) = L(R).
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Theorem 3.4: Forevery DFA A= (Q,%X,9,qp, F)
there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be {1,2,...,n},
with 1 being the start state.

o Let R,g?“) be a regex describing the set of
labels of all paths in A from state ¢ to state
j going through intermediate states {1,...,k}
only.
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R{) will be defined inductively. Note that

L (@ le<”>) = L(A)

jeF
Basis: £ =0, i.e. no intermediate states.

e Case 1: 1#
(0) _
Rij = EB a
{a€X:6(i,a)=j}

e Case 2: 1=

RgZ-O) = $ al|l 4+ €
{a€3:6(i,a)=1i}
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Induction:

(k)
Rij
(k—1)
Rz’j
_|_
k—1 k—1)\* 5(k—1
R () G

AW AW

-~

(k-1)

In RKD
Ik Zero or more stringsin Ry

k-1
In R{EY
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Example: Let's find R for A, where
L(A) ={2z0y :z € {1}* and y € {0,1}*}
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We will need the following simplification rules:
e (¢e+ R)"=R*
e R+ RS* = RS*
e PR = RO = 0 (Annihilation)

e )+ R= R+ 0 = R (Identity)
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RO | e+0+1

1 0 0 0)\* (0
jo) — Rz(j) + Rgl)(Rgl)) jo)

By direct substitution Simplified
RV | e+ 1+ (e+D(e+1)*(e+1) | 1*
R |0+ (e+1)(e+1)*0 1*0
RY |0+ 0(e+1)*(e+1) 0
RY | e4+0+14+0%+1)*0 e+ 041

22
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Simplified

Ol
R{Y | 1%0
R |0
RY | e+041

2 1 1 1)\* (1
R = R 4 R (RS5) )

By direct substitution

1* 4+ 1*0(e 4 0 + 1)*0

1*0 + 1*0(e + 0+ 1)*(e + 0+ 1)

D+ (e+0+1)(e+0+1)*0
e+0+1+(e+0+1)(e+0+1)*(e+0+1)
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By direct substitution

R{ | 1% + 1*0(e + 0 + 1)*0

R{2) | 10 4+ 1¥0(e + 0+ 1)*(e + 0 + 1)

RSY |0+ (e+0+1)(e+0+1)*0

RSY |e+0+1+(e+0+1)(e+0+1)*(e+0+1)

Simplified

R{?) | 1*

R{2) | 1*0(0 + 1)*
RS2 | 0
R | (0+1)*

The final regex for A is

R{? = 1*0(0 + 1)*
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Observations

There are n3 expressions Rg?)
Each inductive step grows the expression 4-fold

Rgb) could have size 4™

For all {i,57} C{1,...,n}, Rg‘:) uses R,({IZ_D

so we have to write n? times the regex R]g’]z_l)

We need a more efficient approach:
the state elimination technique
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The state elimination technique

Let's label the edges with regex’s instead of
symbols

o7



Now, let’'s eliminate state s.

R+ QP

R+ QSR

Rim ¥ QxS Ry

m

For each accepting state ¢ eliminate from the
original automaton all states exept qp and gq.
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For each ¢ € F' we'll be left with an A, that
looks like
R U
DR
Start /\@
T

\/

that corresponds to the regex £, = (R4+SU*T)*SU*

or with A, looking like

R
Start
—

corresponding to the regex E; = R*

e [ he final expression is

D Eq

qe
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Example: A, where L(A) ={W :w = x1b, or w =
xlbc, x € {0,1}* {b,c} C {O,1}}

Start_>ml 0,1 ‘0,1

We turn this into an automaton with regex
labels

0+1

Start_»ﬂ 1 e 0+1 ‘ 0+1
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Start_»ﬂ 1 e 0+1 ‘ 0+1

Let's eliminate state B

0+1

Start 1(0 + 1) 0+1
S ®

Then we eliminate state C and obtain Ap

0+1

Start_»Q 1(O+1)(O+1)>

with regex (0+1)*1(04+1)(0+1)
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From

O0+1

Start 10 + 1) 0+1
e

we can eliminate D to obtain Ag

0+1
Start m 10+ 1)
—® -©

with regex (0 4+ 1)*1(0+ 1)

e [ he final expression is the sum of the previ-
ous two regex’s:

(0+1)"1(0+1)(0+ 1)+ (0+1)"1(0 + 1)
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From regex’s to e-NFA'’s

Theorem 3.7: For every regex R we can con-
struct and e-NFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for €, @, and a.

—

)

)
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Induction: Automata for R+ S, RS, and R*

O

©

s
ot

xVa

R
O s
(@)

0

J[>o R Q%S—E»O S
(b)
f /\8
»QS—E»O R @
(©)

€

k
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Example: We convert (0+1)*1(0+1)

O O
> \s~o—1»©/s'
(b)
€
€
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Algebraic Laws for languages

e LUM=MUL.

Union is commutative.

e (LUM)UN=LU(MUN).

Union is associative.

o (LM)N =L(MN).

Concatenation is associative

Note: Concatenation is not commutative, i.e.,

there are L and M such that LM #*= ML.
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e )UL=LU()=L.

0 is identity for union.

o {c}L =1IL{e} = L.

{e} is left and right identity for concatenation.
o (L =L0=0.

0 is left and right annihilator for concatenation.
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e L(IMUN)=LMULN.

Concatenation is left distributive over union.
e (MUN)L=MLUNL.

Concatenation is right distributive over union.
e LUL=1L.

Union is idempotent.

o 0% ={e}, {e}*={e}

o LT =LL*=L*L, L*=L7T U{e}
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o (L*)* = L*. Closure is idempotent

Proof:

w e (L) <—

111

o0 /o0 \¢
w E U(U L7>
i=0 \j=0
Jk,m € N :w e (L™)F
JpeN:welLP
OO .
we | L
1=0

w € L*
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Algebraic Laws for regex’s

Evidently e.g. L((0 +1)1) = L(01 + 11)
Also e.g. L((00 4+ 101)11) = L(0011 + 10111).

More generally
L((F+ F)G) =L(EG+ FG)
for any regex’s E, F', and .

e How do we verify that a general identity like
above is true?

1. Prove it by hand.

2. Let the computer prove it.
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In Chapter 4 we will learn how to test auto-

matically if £ = F', for any concrete regex’s
E and F'.

We want to test general identities, such as
E+F = F+ €&, for any regex’'s £ and F.

Method:

1. “Freeze” &£ to a1, and F to a»

2. Test automatically if the frozen identity is
true, e.q. if L(ay +a>) = L(a> + aq)

Question: Does this always work?
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Answer: Yes, as long as the identities use only
plus, dot, and star.

Let's denote a generalized regex, such as (£ + F)E
by

E(E, F)
Now we can for instance make the substitution
S ={£/0,F/11} to obtain

S (E(&, 7)) = (0+11)0
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Theorem 3.13: Fix a ‘“freezing” substitution

Let E(E1,Eo,...,Em) be a generalized regex.

Then for any regex’'s Eq, FE», ..., Em,

w € L(E(E1, Eo, ..., Em))
if and only if there are strings w; € L(E;), s.t.

W= Wi Wi =+ Wy,
and

ajlan T Cij S L(E(CL]_, an,..., am))
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For example: Suppose the alphabet is {1,2}.
Let E(&1,&E5) be (1 4+ &2)&1, and let Eq be 1,
and E> be 2. Then

w € L(E(E1, E2)) = L((E1 + E2)Ey) =
{1y u{2}){1} ={11,21}
if and only if
Jwy € L(E7) = {1}, Jwp € L(E2) = {2} | w = wj,wj,
and

aj,aj, € L(E(a1,a2))) = L((a1+az)a1) = {aja1,aay}

if and only if
j1=jgo=1,0r j1 =1, and jo =2

84



Proof of Theorem 3.13: We do a structural
induction of E.

Basis: If E = ¢, the frozen expression is also e.
If E= 0, the frozen expression is also 0.

If E = a, the frozen expression is also a. Now
w € L(E) if and only if there is v € L(a), s.t.

w = 1 and wu is in the language of the frozen
expression, i.e. u € {a}.
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Induction:
Case 1: E=F 4 G.

Then &(E) = &(F) + &(G), and
L(&(E)) = L(&(F)) U L(&(G))

Let £ and and F' beregex's. Thenw € L(E + F)
if and only if w € L(E) or w € L(F), if and only
if ap € L(&(F)) or a> € L(&(G)), if and only if
a1 € &(E), or a> € &(E).

Case 2: E=F.G.

Then &(E) = &(F).&(G), and
L(&(E)) = L(&(F)).L(A(G))

Let £ and and F' be regex’'s. Then w € L(E.F)
if and only if w = wqwy, w1 € L(E) and wy € L(F),
and aias € L(#(F)).L(#(G)) = &(E)

Case 3: E = F*,

Prove this case at home.
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Examples:

To prove (L+ M)* = (L*M™)* it is enough to
determine if (a1 +a3)* is equivalent to (aja?)*

To verify £* = L*L* test if a] is equivalent to

* K
alal .

Question: Does L+ ML = (L + M)L hold?
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Theorem 3.14: E(&1,...,En) =F(&1,...,Em) &
L(&(E)) = L(a(F))

Proof:

(Only if direction) E(&1,...,Em) =F(&1,...,Em)
means that L(E(F1,...,Em)) = L(F(E1,...,En))
for any concrete regex’'s Eq,..., Ey. In partic-

ular then L(&(E)) = L(&(F))

(If direction) Let FE4,..., E, be concrete regex’s.
Suppose L(&d(E)) = L(&(F)). Then by Theo-
rem 3.13,

Jw; € L(E;),w = Wiy Wiy gy s Qg € L(&(E)) &
Jw; € L(E;), w = wj, ---wj,,,aj, ---aj, € L(&F)) <

w & L(F(El, . Em))
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Properties of Regular Languages

e Pumping Lemma. Every regular language
satisfies the pumping lemma. If somebody
presents you with fake regular language, use
the pumping lemma to show a contradiction.

e (Closure properties. Building automata from
components through operations, e.g. given L
and M we can build an automaton for LN M.

e Decision properties. Computational analysis
of automata, e.g. are two automata equiva-

lent.

e Minimization techniques. \We can save money
since we can build smaller machines.
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The Pumping Lemma Informally

Suppose Lgi = {0™1™ : n > 1} were regular.

Then it would be recognized by some DFA A,
with, say, k states.

Let A read 0. On the way it will travel as
follows:

€ PO
0 P1
00 P>
ok Dk

= i < j ! p; = p; Call this state gq.
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Now you can fool A:

If 5(q,1*) € F the machine will foolishly ac-
cept 071°.

If 6(q,1%) ¢ F the machine will foolishly re-
ject 0°1°.

Therefore Lpp cannot be regular.

e Let's generalize the above reasoning.
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Theorem 4.1.
The Pumping Lemma for Regular Languages.
Let L be reqgular.

Then dn,Vw € L : lw| > n = w = xyz such that

1. yF e

2. lzy| < n

3. VE>0, azyfz e L
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Proof: Suppose L is regular

The L is recognized by some DFA A with, say,
n states.

Let w =aqas...am € L, m > n.
Let p; = d(q0,a1a2---a;).

:>E|’1;<j:pi:pj

93



Now w = xyz, where
l. x =aja>---a;
2. Yy =aj410;42" - aj

3. 2=0aj410j42-..-am

Evidently zy*z € L, for any k> 0. ¢ g.p.
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Example: Let Leq be the language of strings
with equal number of zero’'s and one’s.

Suppose Leg is regular. Then w = 0"1" € L.

By the pumping lemma w = zyz, |vy| < n,
y # € and zyFz € Leg

w=000---.-- 00111---11
——— —— \ _

In particular, zz € Leg, but zz has fewer O's
than 1's.
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Suppose Ly = {1P : p is prime } were regular.
Let n be given by the pumping lemma.

Choose a prime p > n + 2.

p
w=111-----. 11111---11
N—— - _
T Y z
ly|=m

Now zyP~ "™z € Ly,

[zyP 2| = |zz| + (P — m)|y| =
p—m—+(p—m)m=(1+m)(p—m)

which is not prime unless one of the factors
is 1.

e yFe=>14+m>1
e m= |yl <|zy|<n, p>n+2

> p—m>n—+2—n=2.
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Closure Properties of Regular Languages

Let L and M be regular languages. Then the
following languages are all regular:

e Union: LUM

e Intersection: LN M

e Complement: N

e Difference: L\ M

e Reversal: Lt = {wh :w e L}
e Closure: L*.

e (Concatenation: L.M

e Homomorphism:
h(L) = {h(w) : w € L,h is @ homom. }

e Inverse homomorphism:
i) ={weX :h(w) EL,h: X — Aisahomom. }
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Theorem 4.4. For any regular L and M, LUM
IS regular.

Proof. Let L = L(F) and M = L(F'). Then
L(E+ F) = LUM by definition.

Theorem 4.5. If L is a regular language over
>, thensois L =X*\L.

Proof. Let L be recognized by a DFA

A — (Q? 2757 QO?F)'
Let B= (Q,%,6,q0,Q\ F). Now L(B) = L.
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Example:

Let L be recognized by the DFA below

Question: What are the regex’'s for L and L
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Theorem 4.8. If L and M are regular, then
sois L NM.

Proof. By DeMorgan's law LN M = LU M.
We already that regular languages are closed
under complement and union.

We shall shall also give a nice direct proof, the
Cartesian construction from the e-commerce
example.
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Theorem 4.8. If L and M are regular, then
so in LN M.

Proof. Let L be the language of

Arp = (Qr,. %, 91,91, Fr)
and M be the language of

Anr = Qs =, 00, qnrs Far)

We assume w.l.0.g. that both automata are
deterministic.

We shall construct an automaton that simu-
lates Ay and Ay, in parallel, and accepts if and
only if both Ay and A,; accept.
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If A; goes from state p to state s on reading a,
and A,; goes from state g to state ¢ on reading

a, then A;~ps Will go from state (p,q) to state
(s,t) on reading a.

Input a

Start :: Accept
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Formally

Aram = (Qr X Qs 2,010, ey anr), Fr X Far),

where

Sr.nm (P, q),a) = (6r.(p,a),ép(q,a))

It will be shown in the tutorial by and induction
on |w| that

Sran((ar, ann),w) = (52(qr, w), Sar(ans, w))

The claim then follows.

Question: Why?
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Example: (¢) = (a) x (b)

1

Start @ 0 , 0.1

(@
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Theorem 4.10. If L and M are regular lan-
guages, then so in L\ M.

Proof. Observe that L\ M = LN M. We
already know that regular languages are closed
under complement and intersection.
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Theorem 4.11. If L is a regular language,
then so is L.

Proof 1: Let L be recognized by an FA A.
Turn A into an FA for L, by

1. Reversing all arcs.

2. Make the old start state the new sole ac-
cepting state.

3. Create a new start state pg, with §(pg,e) = F
(the old accepting states).
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Theorem 4.11. If L is a regular language,
then so is L1t

Proof 2: Let L be described by a regex E.
We shall construct a regex ER, such that
L(ER) = (L(E)*".

We proceed by a structural induction on FE.
Basis: If E is €, 0, or a, then ER = E.

Induction:
1. E=F4+G. Then EfR = R 4 g&

2. E=FG. Then ER = gE i

3. E = F*. Then Eff = (Fi)*

We will show by structural induction on E on
blackboard in class that
L(E®) = (L(E)"
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Homomorphisms

A homomorphism on X is a function h : >2* — ©%*,
where > and © are alphabets.

Let w =ajan---an € Z*. Then

h(w) = h(a1)h(az) - --h(an)

and

h(L) = {h(w) : w € L}

Example: Let h: {0,1}* — {a,b}* be defined by
h(0) = ab, and h(1) = e. Now A(0011) = abab.

Example: h(L(10*1)) = L((ab)™).
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Theorem 4.14: h(L) is regular, whenever L
IS.

Proof:

Let L = L(FE) for a regex E. We claim that
L(h(E)) = h(L).

Basis: If £ is e or ). Then h(EF) = E, and
L(h(E)) = L(E) = h(L(E)).

If Eis a, then L(E) = {a}, L(h(E)) = L(h(a)) =
{h(a)} = h(L(E)).

Induction:

Case 1: L = E+ F. Now L(h(E + F)) =
L(h(E)+h(F)) = L(h(E))UL(h(F)) = h(L(E))U
h(L(F)) = h(L(E) U L(F)) = h(L(E + F)).

Case 2: L = E.F. Now L(h(E.F)) = L(h(E)).L(h(F))
= h(L(E)).h(L(F)) = h(L(E).L(F))

Case 3: L = E*. Now L(h(E*)) = L(h(E)*) =
L(h(E))*" = h(L(E))" = h(L(E")).
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Inverse Homomorphism

Let h: >Z* — ©* be a homom. Let L C ©F,
and define

A1 (L) = {we=*: h(w) € L}

(b)
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Example: Let h: {a,b} — {0,1}* be defined by
h(a) = 01, and h(b) = 10. If L = L((00+1)*),
then h=1(L) = L((ba)*).

Claim: h(w) € L if and only if w = (ba)™

Proof: Let w = (ba)™. Then h(w) = (1001)" ¢
L.

Let h(w) € L, and suppose w ¢ L((ba)*). There
are four cases to consider.

1. w begins with a. Then h(w) begins with
01 and ¢ L((00+ 1)%*).

2. w ends in b. Then h(w) ends in 10 and
¢ L((00 + 1)%).

3. w = zaay. Then h(w) = 20101v and ¢
L((00 4 1)*).

4. w = xbby. Then h(w) = 21010v and €&
L((00 4+ 1)*).
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Theorem 4.16: Let h : X* — ©* be a ho-
mom., and L C ©* regular. Then h~1(L) is
regular.

Proof: Let L bethelanguageof A = (Q,©,46,q0, F).
We define B = (Q, >, 7, qo, F'), where

v(g,a) = 6(q, h(a))

It will be shown by induction on |w| in the tu-
torial that 4(qg, w) = §(qo, h(w))

Input a

|

h

I nput
Start h(a) to A

—_—
Accept/regect
A -
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Decision Properties

We consider the following:

1. Converting among representations for reg-
ular languages.

2. Is L =07

3. Iswel?

4. Do two descriptions define the same lan-
quage”’
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From NFA’'s to DFA’s

Suppose the e-NFA has n states.

To compute ECLOSE(p) we follow at most n?
arcs.

The DFA has 2" states, for each state S and
each a € ¥ we compute §p(S,a) in n3 steps.
Grand total is O(n32") steps.

If we compute ¢ for reachable states only, we
need to compute §p(S,a) only s times, where s
is the number of reachable states. Grand total
is O(n3s) steps.
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From DFA to NFA

All we need to do is to put set brackets around
the states. Total O(n) steps.

From FA to regex

We need to compute n3 entries of size up to
4™ Total is O(n34").

The FA is allowed to be a NFA. If we first
wanted to convert the NFA to a DFA, the total
time would be doubly exponential

From regex to FA’s We can build an expres-
sion tree for the regex in n steps.

We can construct the automaton in n steps.
Eliminating e-transitions takes O(n3) steps.

If you want a DFA, you might need an expo-
nential number of steps.
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Testing emptiness

L(A) #= 0 for FA A if and only if a final state
IS reachable from the start state in A. Total
O(n?) steps.

Alternatively, we can inspect a regex E and tell
if L(E) = 0. We use the following method:

FEF=F+4+G. Now L(FE) is empty if and only if
both L(F) and L(G) are empty.

E = F.G. Now L(F) is empty if and only if
either L(F') or L(G) is empty.

E = F*. Now L(F) is never empty, since € €
L(E).

E =¢€. Now L(FE) is not empty.
E = a. Now L(FE) is not empty.

E =0. Now L(F) is empty.
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Testing membership

To test w € L(A) for DFA A, simulate A on w.
If lw| = n, this takes O(n) steps.

If A is an NFA and has s states, simulating A
on w takes O(ns?) steps.

If A is an e-NFA and has s states, simulating
A on w takes O(ns3) steps.

If L = L(FE), for regex E of length s, we first

convert £ to an e-NFA with 2s states. Then we
simulate w on this machine, in O(ns3) steps.
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Equivalence and Minimization of Automata

Let A = (Q,X,9,q0,F) bea DFA, and {p,q} C Q.
We define

p=q & YweX* : §(p,w) € Fiff §(q,w) € F

e If p =q we say that p and ¢q are equivalent

e If p £ q we say that p and q are distinguish-
able

IOW (in other words) p and ¢ are distinguish-
able iff

Jw : d(p,w) € F and §(q,w) ¢ F, or vice versa
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Example:

5(C,e) € F,6(G,e) ¢ F = C#G

6(A,01) =C € F,6(G,01))=E¢F=A#G
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What about A and E7

5(A,e) =A¢F,0(BE,e)=E¢F
5(A,1)=F =46(E,1)

Therefore §(A,1z) = 6(E, 1z) = 6(F, x)
6(A,00) =G = §(E,00)

6(A,01) =C =4(E,01)

Conclusion: A= F.
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We can compute distinguishable pairs with the
following inductive table filling algorithm:

Basis: If pe F and q € F', then p # q.

Induction: If da € X : §(p,a) #Z 6(q,a),
then p # q.

Example: Applying the table filling algo to A:

B X

C X |X

D X | X [X

E X | X | X

F X | X [X X
G [X |[X | X | X |X|X
H |Xx X | X [ X | X |[X

A B CDE F G
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Theorem 4.20: If p and g are not distin-
guished by the TF-algo, then p =g.

Proof: Suppose to the contrary that that there
is a bad pair {p,q}, s.t.

1. 3w :é(p,w) € F,0(q,w) ¢ F, or vice versa.

2. The TF-algo does not distinguish between
p and q.

Let w = ajar:--an be the shortest string that
identifies a bad pair {p,q}.

Now w # € since otherwise the TF-algo would
in the basis distinguish p from q. Thus n > 1.

122



Consider states r = §(p,a1) and s = 6(q,aq).
Now {r,s} cannot be a bad pair since {r, s}
would be indentified by a string shorter than w.
Therefore, the TF-algo must have discovered
that » and s are distinguishable.

But then the TF-algo would distinguish p from
q in the inductive part.

Thus there are no bad pairs and the theorem
IS true.
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Testing Equivalence of Regular Languages

Let L and M be reg langs (each given in some
form).

TotestifL=M

1. Convert both L and M to DFA's.

2. Imagine the DFA that is the union of the
two DFA’'s (never mind there are two start

states)

3. If TF-algo says that the two start states
are distinguishable, then L #= M, otherwise
L = M.
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Example:

We can “see” that both DFA accept
L(e+ (04 1)*0). The result of the TF-algo is

m O O W
X

X X | X

A B C D

Therefore the two automata are equivalent.
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Minimization of DFA'sS

We can use the TF-algo to minimize a DFA
by merging all equivalent states. IOW, replace
each state p by p/_.

Example: The DFA on slide 119 has equiva-
lence classes {{A, E},{B,H},{C},{D, F},{G}}.

The “"union” DFA on slide 125 has equivalence
classes {{A,C,D},{B,E}}.

Note: In order for p/_ to be an equivalence
class, the relation = has to be an equivalence
relation (reflexive, symmetric, and transitive).
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Theorem 4.23: If p=qgandg=r, thenp=r.

Proof: Suppose to the contrary that p # r.
Then Jw such that §(p,w) € F and §(r,w) € F,
or vice versa.

OTH, §(q,w) is either accpeting or not.
Case 1: 6(q,w) is accepting. Then ¢ # r.
Case 1: 6(q,w) is not accepting. Then p # q.
The vice versa case is proved symmetrically

Therefore it must be that p =r.
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To minimize a DFA A = (Q,X,6,q0,F) con-
struct a DFA B=(Q/=,%,v,q90/=, F/-), where

v(p/=,a) = é(p,a)/=
In order for B to be well defined we have to
show that
If p=gq then 6(p,a) =d6(q,a)

If 6(p,a) # 5(q,a), then the TF-algo would con-
clude p # q, so B is indeed well defined. Note
also that F/_ contains all and only the accept-
ing states of A.
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Example: We can minimize

to obtain
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NOTE: We cannot apply the TF-algo to NFA's.

For example, to minimize

0,1

smn_»ﬂo
©

we simply remove state C.

However, A £ C.
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Why the Minimized DFA Can’t Be Beaten

Let B be the minimized DFA obtained by ap-
plying the TF-algo to DFA A.

We already know that L(A) = L(B).

What if there existed a DFA C, with
L(C) = L(B) and fewer states than B~

Then run the TF-algo on B “union” C.
Since L(B) = L(C) we have ¢§ = §.

Also, 5(q€,a) = 5(qg,a), for any a.
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Claim: For each state p in B there is at least
one state q in C, s.t. p=q.

Proof of claim: There are no inaccessible states,
SOp = g(qg, ajap---ay), for somestring ajas - - - ag.
Now ¢ = 8(q§,a1az---a;), and p = q.

Since C has fewer states than B, there must be
two states r and s of B such that r =t = s, for
some state t of C. But then r = s (why?)
which is a contradiction, since B was con-
structed by the TF-algo.
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Context-Free Grammars and Languages

e We have seen that many languages cannot
be regular. Thus we need to consider larger
classes of langs.

e Contex-Free Languages (CFL's) played a cen-
tral role natural languages since the 1950's,
and in compilers since the 1960’s.

e Context-Free Grammars (CFG's) are the ba-
sis of BNF-syntax.

e Today CFL's are increasingly important for
XML and their DTD's.

We'll look at: CFG's, the languages they gen-
erate, parse trees, pushdown automata, and
closure properties of CFL'’s.
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Informal example of CFG’s

Consider L, ={w eI 1w = whty
For example otto € Ly, madamimadam € L,,,;.

In Finnish language e.g. saippuakauppias € L,
(“'soap-merchant”)

Let > = {0,1} and suppose L,, were regular.
Let n be given by the pumping lemma. Then
0"10™ € Lyq- In reading 0™ the FA must make
a loop. Omit the loop; contradiction.

Let's define L, inductively:

Basis: ¢,0, and 1 are palindromes.

Induction: If w is a palindrome, so are OwO
and lwl.

Circumscription: Nothing else is a palindrome.
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CFG's is a formal mechanism for definitions
such as the one for L.

P — €
P—0
P—1
P — 0OPO
P—1P1

o & N

O and 1 are terminals

P is a variable (or nonterminal, or syntactic
category)

P is in this grammar also the start symbol.

1-5 are productions (or rules)
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Formal definition of CFQG’s

A context-free grammar is a quadruple

G: (V7T7P7S)

where
V is a finite set of variables.
T is a finite set of terminals.

P is a finite set of productions of the form
A — o, where A is a variable and a € (VUT)*

S is a designated variable called the start symbol.
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Example: Gy, = ({P},{0,1}, A, P), where A =
{P—>¢P—0,P—1,P—0P0,P— 1P1}.

Sometimes we group productions with the same
head, e.g. A= {P — ¢|0|1|0P0|1P1}.

Example: Regular expressions over {0,1} can

be defined by the grammar

Greger = ({F},{0,1}, A, F)

where A =

({E—~0,E—1,E— EEE— E+E,E— E*,E — (E)}
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Example: (simple) expressions in a typical prog
lang. Operators are + and *, and arguments
are identfiers, i.e. strings in

L((a+b)(a+b+0+1))

The expressions are defined by the grammar

G={EI},T,PFE)

where T'={4,%,(,),a,b,0,1} and P is the fol-
lowing set of productions:

E—1
F—-FEF+FE
E— ExFE

I —a
I —b
I — Ia
I — Ib
I — I0
I — 11

©OONOO A~

©
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Derivations using grammars

e Recursive inference, using productions from
body to head

e Derivations, using productions from head to

body.

Example of recursive inference:

String Lang | Prod | String(s) used
(i) | a I 5 -
(i) | b I 6 -
(iii) | b0 I 9 (ii)
(iv) | b0O I 9 (iii)
(v) | a ) 1 (i)
(vi) | b0O E 1 (iv)
(vii) | a + b0O0 E 2 (v), (vi)
(viii) | (a 4 b00) E 4 (Vii)
(ix) | ax (a4 b00) | E 3 (v), (Viii)
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Let G = (V,T,P,S) be a CFG, AcV,
{a, 8} C(VUT)*, and A — v € P.

Then we write

aAB = ayfB

or, if G is understood

aApB = ayi
and say that aA@ derives avg.

We define = to be the reflexive and transitive
closure of =, IOW:

Basis: Let a € (VUT)*. Then a = a.

Induction: If a = 3, and 8 = ~, then a = ~.
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Example: Derivation of a* (a+ b00) from E in
the grammar of slide 138:

F=FExE=>I«xFE=>axFE=ax(F)=>
ax(E+FE) = ax([+F) = ax(a+F) = ax(a+1) =

a*(a+I0) = ax*(a+ I00) = ax* (a—+ b00)

Note: At each step we might have several rules
to choose from, e.qg.

I«FE=axFE=ax(F), versus
I+«E=1x%x(F)=ax(F).

Note2: Not all choices lead to successful deriva-
tions of a particular string, for instance

E=FE+FE

won't lead to a derivation of a x (a 4+ b00).
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Leftmost and Rightmost Derivations

L_eftmost derivation :> Always replace the left-
most variable by one of its rule-bodies.

Rightmost derivation =:. Always replace the
rightmost variable by one of its rule-bodies.

Leftmost: The derivation on the previous slide.
Rightmost:

F=FxFE =
Ex(E) = Ex(E+FE) = Ex(E+1) = Ex(E+10)
= Ex(E+100) = Ex(E+b00) = Ex*(I+b00)

— E % (a+b00) = I % (a+ b00) = a * (a + b00)

We can conclude that E = a * (a 4 500)

142



The Language of a Grammar

If G(V,T,P,S) is a CFG, then the language of
G is

L(G) ={weT": 5= w)}
i.e. the set of strings over T* derivable from

the start symbol.

If G is a CFG, we call L(G) a
context-free language.

Example: L(G),) is a context-free language.
Theorem b5.7:

L(Gpa) = {w € {0,1}* : w = w''}

Proof: (D-direction.) Suppose w = wf. We
show by induction on |w| that w € L(Gpq;)
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Basis: |w| = 0, or |lw| = 1. Then w is g0,
or 1. Since P —- ¢, P — 0, and P — 1 are
productions, we conclude that P % w in all
base cases.

Induction: Suppose |w| > 2. Since w = wf,
we have w = 0z0, or w = 1z1, and z = .

If w = 020 we know from the IH that P = z.
T hen

P = 0P0= 0z0 = w
Thus w e L(Gpal)-

The case for w = 1x1 is similar.
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(C-direction.) We assume that w € L(G)pgy)
and must show that w = w'*.

Since w € L(Gpg), We have P = w.

We do an induction of the length of =.

Basis: The derivation P = w is done in one
step.

Then w must be ¢,0, or 1, all palindromes.

Induction: Let n > 1, and suppose the deriva-
tion takes n 4+ 1 steps. Then we must have

w = 0x0 & OP0 « P
or
w=1zxl £1P1 <« P

where the second derivation is done in n steps.

By the IH x is a palindrome, and the inductive
proof is complete.
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Sentential Forms

Let G = (V,T,P,S) bea CFG, and o € (VUT)*.
If

S & o

we say that « is a sentential form.

If S :> o we say that « is a left-sentential form,

and |f S = o We say that o is a right-sentential
form

Note: L(G) is those sentential forms that are
in T,
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Example: Take G from slide 138. Then Ex (I + F)
IS a sentential form since

F=FExE = FEx(F)= FEx(E+F)=Ex(I+F)

This derivation is neither leftmost, nor right-
most

Example: a * E is a left-sentential form, since

El:>E>|<El:>I>|<El:>a,*E

Example: Ex(E-+ FE) is a right-sentential form,
since

E=E+xE=Ex(E)= Ex(E+E)
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Parse Trees

o If w € L(G), for some CFG, then w has a
parse tree, which tells us the (syntactic) struc-
ture of w

e w could be a program, a SQL-query, an XML-
document, etc.

e Parse trees are an alternative representation
to derivations and recursive inferences.

e [ here can be several parse trees for the same
string

e Ideally there should be only one parse tree
(the “true” structure) for each string, i.e. the
language should be unambiguous.

e Unfortunately, we cannot always remove the
ambiguity.
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Constructing Parse Trees

Let G = (V,T,P,S) be a CFG. A treeis a parse
tree for G if:

1. Each interior node is labelled by a variable
in V.

2. Each leafis labelled by a symbol in V. UT U {e}.
Any e-labelled leaf is the only child of its
parent.

3. If an interior node is lablelled A, and its
children (from left to right) labelled

X17X27"'7Xk7
then A — X1Xp...X, € P.
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Example: In the grammar

E—1
FE—-FE+FE
E— ExE

W hoE

the following is a parse tree:
E
N
E +
\

E

T his parse tree shows the derivation E = I+ FE
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Example: In the grammar

P — €
P—0
P—1
P — 0OPO
P—1P1

o & N

the following is a parse tree:

It shows the derivation of P = 0110.
151



The Yield of a Parse Tree

The yield of a parse tree is the string of leaves
from left to right.

Important are those parse trees where:
1. The yield is a terminal string.

2. The root is labelled by the start symbol

We shall see the the set of vields of these
important parse trees is the language of the
grammar.
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Example: Below is an important parse tree

/\\

] /\\
BN
|

/\
/\

b

The yield is a * (a + b00).

Compare the parse tree with the derivation on

slide 141.
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Let G = (V,T,P,S) be a CFG, and A ¢ V.
We are going to show that the following are
equivalent:

1. We can determine by recursive inference
that w is in the language of A

2. A w

3A%waMAéw

4. There is a parse tree of G with root A and
yield w.

To prove the equivalences, we use the following
plan.

Parse
Leftmost <+ tree

derivation / \
/ Rightmost

Derivation +— derivation Recursive

\—/ inference
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From Inferences to Trees

Theorem 5.12: Let G = (V,T,P,S) be a
CFG, and suppose we can show w to be in
the language of a variable A. Then there is a
parse tree for G with root A and vield w.

Proof: We do an induction of the length of
the inference.

Basis: One step. Then we must have used a
production A — w. The desired parse tree is
then
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Induction: w is inferred in n + 1 steps. Sup-
pose the last step was based on a production

A— X1 X0 Xp,
where X; e VUT. We break w up as
wiw?2 - - - Wi,

where w; = X;, when X; € T', and when X; € V,
then w; was previously inferred being in X;, in
at most n steps.

By the IH there are parse trees ¢ with root X;
and yield w;. Then the following is a parse tree
for G with root A and yield w:
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From trees to derivations

we'll show how to construct a leftmost deriva-
tion from a parse tree.

Example: In the grammar of slide 6 there clearly
IS a derivation

E = 1= Ib= ab.

Then, for any a and g there is a derivation

a3 = alB = alblB = aabp.

For example, suppose we have a derivation

E=E+E=E+ (E).

The we can choose a« = EF 4+ ( and 3 =) and
continue the derivation as

E+ (E)=E+ (I) = E+ (Ib) = E + (ab).

This is why CFG’s are called context-free.
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Theorem 5.14: Let G = (V,T,P,S) be a
CFG, and suppose there is a parse tree with
root labelled A and yield w. Then A % win G.

Proof: We do an induction on the height of
the parse tree.

Basis: Height is 1. The tree must look like

A

Consequently A — w € P, and A Z:> w.
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Induction: Height is n + 1. The tree must
look like

A

AVAA

Then w = wjwy---wg, where

1. If Xi e T, then w; = Xi-

2. If X; €V, then X; %wi in G by the IH.
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Now we construct A :> w by an (inner) induc-
tion by showing that

Vi: A % wiwy - - wiX'L'—I—lX'L'—I—Q s Xk'

Basis: Let : = 0. We already know that
A ﬁ X]_X,L'_|_2 S Xk'
Induction: Make the IH that

A %n} wiw - - - wi—lXiXi—|—1 ce Xk'
(Case 1:) X; € T. Do nothing, since X; = w;

gives us

A%wlewZXZ_HXk
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(Case 2:) X; € V. By the IH there is a deriva-
tion X; = Q] = Q= = W By the contex-
free property of derivations we can proceed
with

A

wiwz w1 XXy o Xg =

wiw2 - w101 Xjpq o X =

Wiw2 - Wi 102X 41 X =

WQWy -« Wi w; X1 Xg
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Example: Let's construct the leftmost deriva-
tion for the tree

Suppose we have inductively constructed the
leftmost derivation

EFE=1=a

Im Im

corresponding to the leftmost subtree, and the
leftmost derivation

E=(E)=>(E+E)=>U+FE)=>(a+FE)=>
(a+1) = (a+10) = (a+ 100) = (a + b00)

corresponding to the righmost subtree.
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For the derivation corresponding to the whole
tree we start with E ﬁ E x E and expand the
first £ with the first derivation and the second
E with the second derivation:

B
E*Eﬁ
I*Eﬁ
a*Eﬁ
a,*(E)ﬁ
a*(E—I—E)ﬁ
a*(]—l—E)ﬁ
a*(a—I—E)ﬁ
a*(a—l—])ﬁ
a*(a—l—[O)ﬁ
a*(a—I—IOO)ﬁ
a * (a + b00)
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From Derivations to Recursive Inferences

Observation: Suppose that A = X1 X5+ X1 = w.
Then w =wjwy---wg, where X; = W;

The factor w; can be extracted from A = w by
looking at the expansion of X; only.
Example: £ = a*xb—+ a, and

F= F «x FEF 4+ FE
N~~~

X1 Xo X3 X4 Xs

We have

F=FEFxE=FExE+FEF=1IxE+FE=1x1+4+F =
IxI+1=ax]I+1=axb+1=axb+a

By looking at the expansion of X3 = E only,
we can extract

E=1=0b.
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Theorem 5.18: Let G = (V,T,P,S) be a
CFG. Suppose A % w, and that w is a string
of terminals. Then we can infer that w is in
the language of variable A.

Proof: We do an induction on the length of
the derivation A % w.

Basis: One step. If A ? w there must be a
production A — w in P. The we can infer that
w iS in the language of A.
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Induction: Suppose A % w in n 4+ 1 steps.
Write the derivation as

A?XlXQ---Xk%w

The as noted on the previous slide we can
break w as wiws---wy Where X; % w;. Fur-

thermore, X; % w; can use at most n steps.

Now we have a production A — X{1Xo--- Xy,
and we know by the IH that we can infer w; to
be in the language of Xj.

T herefore we can infer wywy ---wg to be in the
language of A.
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Ambiguity in Grammars and Languages

In the grammar

E—1
F—-FE+F
E— ExFE

W=

the sentential form E + E x E has two deriva-
tions:
F=F+FEF=F+ExFE

and
EFE=FxFE=F+ FExFE

This gives us two parse trees:

/\\ /\\
/\\ /\\

(@ (b)
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T he mere existence of several derivations is not
dangerous, it is the existence of several parse
trees that ruins a grammar.

Example: In the same grammar

5. I —a
I —b
I — Ia
I — Ib
I — IO
10. I — 11

Ko NO

the string a + b has several derivations, e.qg.

F=F+F=14+F=a+FEF=a+1=a-+0b
and
F=F+FEF=F+I1I=14+1=14+b=a-+05b

However, their parse trees are the same, and
the structure of a + b is unambiguous.
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Definition: Let G = (V,T,P,S) be a CFG. We
say that GG is ambiguous is there is a string in
T* that has more than one parse tree.

If every string in L(G) has at most one parse
tree, (G is said to be unambiguous.

Example: The terminal string a4+ a *xa has two
parse trees:

/\\ /\\
/\\ /\\

(a (b)
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Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-
guity “by hand”

Bad news: There is no algorithm to do it

More bad news: Some CFL's have only am-
biguous CFG's

We are studying the grammar

E—I|E+E|ExE|(E)
I—alb|Ia|Ib|I0]|I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-
erators, e.g. is E+ FEF + E meant to be

E4+(E+E)or (E4+E)+E.
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Solution: We introduce more variables, each
representing expressions of same “binding strength.”

1. A factor is an expresson that cannot be
broken apart by an adjacent * or +. Our
factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-
ken by 4+. For instance a*xb can be broken
by alx or xal. It cannot be broken by +,
since e.g. al +axb is (by precedence rules)
same as al 4+ (a*xb), and axb+ al is same
as (a*b)+al.

3. The rest are expressions, i.e. they can be
broken apart with * or +.
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we'll let F' stand for factors, 7T for terms, and E
for expressions. Consider the following gram-
mar:

I -al|b|la|lb|I0]|I1
F—T|(E)

T — F|TxF
E—T|E+T

W=

Now the only parse tree for a + a x a will be

/\\
/\\
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Why is the new grammar unambiguous?

Intuitive explanation:

e A factor is either an identifier or (E), for
some expression FE.

e [ he only parse tree for a sequence

Jixfo*x - xfp_1%fn

of factors is the one that gives fi* fox---xf,_1
as a term and f, as a factor, as in the parse
tree on the next slide.

e AN expression is a sequence

t1+t2+"'+tn—l+tn

of terms t;. It can only be parsed with
t1+t>o+---+1t,_1 as an expression and t, as
a term.
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/\\
/\\

TN
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Leftmost derivations and Ambiguity

The two parse trees for a + a * a

/\\ /\\
/\\ /\\

(a (b)
give rise to two derivations:
EﬁE—l—Eﬁ]—l—Eﬁa—l—Eﬁa—l—E*E
ﬁa—l—]*Eﬁa—l—a*Eﬁa—l—a*]ﬁa—l—a*a
and
EﬁE*EﬁE—I—E*EﬁI—I—E*Eﬁa—I—E*E
ﬁa—l—[*Eﬁa—l—a*Eﬁa—l—a*Iﬁa—l—a*a
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In General:

e One parse tree, but many derivations

e Many leftmost derivation implies many parse
trees.

e Many rightmost derivation implies many parse
trees.

Theorem 5.29: For any CFG G, a terminal
string w has two distinct parse trees if and only
if w has two distinct leftmost derivations from
the start symbol.
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Sketch of Proof: (Only If.) If the two parse
trees differ, they have a node a which dif-
ferent productions, say A — X1 Xo--- X and
B — Yi1Y>---Yy. The corresponding leftmost
derivations will use derivations based on these
two different productions and will thus be dis-
tinct.

(If.) Let's look at how we construct a parse
tree from a leftmost derivation. It should now
be clear that two distinct derivations gives rise
to two different parse trees.
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Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-
mars for L are ambiguous.

Example: Consider L =

{a™b"cd™ in > 1,m > 1} u{a"b"c"d" in>1,m > 1}.

A grammar for L is

S— AB|C
A — aAb| ab
B — ¢Bd | cd
C — aCd | aDd
D — bDc | bc

178



Let's look at parsing the string aabbcedd.

/S\
N TN
2NN

(@

/
/
/

/

(b)
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From this we see that there are two leftmost
derivations:

S z:> AB l:> aAbB z:> aabbB z:> aabbecBd z:> aabbeedd

and

S z:> C z:> aCd z:> aaDdd l:> aabDcdd z:> aabbcedd

It can be shown that every grammar for L be-
haves like the one above. The language L is
inherently ambiguous.
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Pushdown Automata

A pushdown automata (PDA) is essentially an
e-NFA with a stack.

On a transition the PDA:
1. Consumes an input symbol.
2. Goes to a new state (or stays in the old).

3. Replaces the top of the stack by any string
(does nothing, pops the stack, or pushes a
string onto the stack)

Finite
— State - I
I nput control Accept/reject

|

Stack
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Example: Let's consider

with “grammar’” P —- OPO, P — 1P1, P — e.
A PDA for Lywr has tree states, and operates
as follows:

1. Guess that you are reading w. Stay in
state O, and push the input symbol onto
the stack.

2. Guess that you're in the middle of ww!t.
Go spontanteously to state 1.

3. You're now reading the head of wlt. Com-
pare it to the top of the stack. If they
match, pop the stack, and remain in state 1.
If they don't match, go to sleep.

4. If the stack is empty, go to state 2 and
accept.
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The PDA for Lywr @S a transition diagram:

0,2,/02,

1,2,/12,

0, 0/00

0,1/01

1,0/10 0, 0/
1,1/11 1,1/ ¢
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PDA formally

A PDA is a seven-tuple:
P=(Q,%,T,6q0, Zo, F),
where
e () is a finite set of states,
e > s a finite input alphabet,
e [ is a finite stack alphabet,

e §:QxXU{el xI — 2@xT" is the transition
function,

e go IS the start state,

e /o € I is the start symbol for the stack,
and

o F'C () is the set of accepting states.
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Example: The PDA

IS actually the seven-tuple

Z,102,
Z,l12,
0/00
1/01
0/10

, 1/11

Start m

_>00

P = ({q07 q1; QQ}7 {Oa 1}7 {07 1, ZO}7 67 q0, ZO7 {QQ}),

where § is given by the following table (set
brackets missing):

0,% | 1,20 | 0,0 0,1 1,0 1,1 €% | e0 |1
— qo || 90,020 | qo0,1Z0 | 90,00 | 0,01 | go0,10 | go,11 | q1,%0 | q1,0 | q1,1
q1 q1, € q1, € q2, Zo
*q2
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Instantaneous Descriptions

A PDA goes from configuration to configura-
tion when consuming input.

To reason about PDA computation, we use
instantaneous descriptions of the PDA. An ID
IS a triple

(q,w,7)

where q is the state, w the remaining input,
and ~ the stack contents.

Let P = (Q,x,I,6,q0,Zp, F) be a PDA. Then
YVweX*gel™:

(p,a) € 6(q,a,X) = (q,aw, XB) F (p,w, af).

We define £ to be the reflexive-transitive clo-
sure of .

186



Example: On input 1111 the PDA

0,2,/02,
1,2,/12,
0, 0/00
0,1/01
1,0/10 0,0/¢
1,1/11 1

&a@ € Z /Z@ »

has the following computation sequences:
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(¢, 11,7 )

y

(g, 111,12 ) (ql,llll,ZO)—>(q2,1111,Zo)

v

(00,11,1120) (q1,111,1zo)—>(q1,11,zo)

y l

(g, 11112 ) (ql, 11,1172 ) (%.11, Z,)

|~ T

(Cb,S,llllZO) (q1,1,11120) (ql,l,lzo)

i l l

(q,€,1111Z5) (q,&,11Z) (g, €5 2Zg)

l

(%, e, 2Z;,)
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The following properties hold:

1. If an ID sequence is a legal computation for
a PDA, then so is the sequence obtained
by adding an additional string at the end
of component number two.

2. If an ID sequence is a legal computation for
a PDA, then so is the sequence obtained by
adding an additional string at the bottom
of component number three.

3. If an ID sequence is a legal computation
for a PDA, and some tail of the input is
not consumed, then removing this tail from
all ID's result in a legal computation se-
quence.
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Theorem 6.5: Ywe X* 3el*:

(q,2,) F (p,y,8) = (g, 2w, ay) F (p,yw, 7).

Proof: Induction on the length of the sequence
to the left.

Note: If v = € we have proerty 1, and if w = ¢
we have property 2.

Note2: The reverse of the theorem is false.
For property 3 we have

Theorem 6.6:

(q, 2w, ) F (p,yw, B) = (q,,) F (p,y, ).
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Acceptance by final state

Let P = (Q,X,I,6,q90, 20, F) be a PDA. The
language accepted by P by final state is

L(P) = {w : (g0, w, Zo) F (g,¢,), q € F}.

Example: The PDA on slide 183 accepts ex-
actly Lywr-

Let P be the machine. We prove that L(P) =

waT-

(D-direction.) Let x € Lywr. Then z = wwR,
and the following is a legal computation se-
quence

*k b S
(g0, ww?, Zg) ¥ (qo, w?, wfZo) F (g1, w!t, wiZp) F
(q1,€, Zo) F (g2, ¢, Zp).
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(C-direction.)

Observe that the only way the PDA can enter
qo is if it is in state g1 with an empty stack.

Thus it is sufficient to show that if (qq, =, Zg) F
(q1,€, Zp) then z = wwft, for some word w.

We'll show by induction on |z| that

(QOaxaa) lik (QIaeaa) — T = wwR-

Basis: If xt = ¢ then z is a palindrome.

Induction: Suppose x = aqas:---an, Wheren > 0,
and the IH holds for shorter strings.

Ther are two moves for the PDA from ID (qg, =, o):
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Move 1: The spontaneous (qg,x, @) F (g1, z, ).
Now (qq1,z,a) I (q1,¢, B) implies that 16| < |af,
which implies 8 # «a.

Move 2: Loop and push (gg,a1an---an,a) F
(q0,a2 - -an,a1c).

In this case there is a sequence

(q07a’1a2"'an,06) - (qO,aQ---a,n,aJla) ... B
(Q]_,an,a]_()é) - (qla 6704).

Thus a1 = an and

k
(g0,a2 - an,a1a) F (q1,an,a1a).

By Theorem 6.6 we can remove a,,. | herefore

*
(g0, a2 apn—1,a100 F (q1,€,a100).

Then, by the IH a>---a,_1 = ny. Then z =
a1yyfay, is a palindrome.
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Acceptance by Empty Stack

Let P = (Q,X,I,9,q0,Zp,F) be a PDA. The
language accepted by P by empty stack is

N(P) = {w : (g0, w, Zo) F (g,¢,€)}.

Note: g can be any state.

Question: How to modify the palindrome-PDA
to accept by empty stack?
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From Empty Stack to Final State

Theorem 6.9: If L = N(Py) for some PDA
Py =(Q,x,I,6N,90,Z0), then 3 PDA P, such
that L = L(Pyp).

Proof: Let

Pp = (QU{po,ps}, =, U{Xo}, 0, po, X0, {ps})
where 6 (po, €, Xo) = {(q0, ZpXp)}, and for all
g€ Q,ae>XU{e}, Y el :0p(q,a,Y) =0dn(q,a,Y),
and in addition (ps,€) € 6p(q,¢, Xo).

g, XO /€
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We have to show that L(Pgr) = N(Py).

(Ddirection.) Let w e N(Py). Then

(g0, w, Zo) k = (g, ¢,6),

for some ¢q. From Theorem 6.5 we get

(g0, w, ZoXo) k; = (g, Xo).

Since o) C 0 we have

(g0, w, ZoXp) F (q,G X0)-

We conclude that

*
(o, w, Xo) k (90, w, ZoXo) F, (g,€, Xo) I (pf, € €).

(Cdirection.) By inspecting the diagram.
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Let’s design P for for cathing errors in strings
meant to be in the if-else-grammar G

S — ¢|SS|iS|iSe.

Here e.qg. {ieie, iie,iei} C G, and e.g. {ei,ieeii} N G = ().
The diagram for Py is

e 7 €
|, 2177

Start m

—@

Formally,

PN — ({Q}7 {iv 6}7 {Z}75N7 q, Z),

where dn(q,i,2) = {(q,Z272)},
and dn(q,e,Z) = {(q,€)}.
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From Px we can construct

PF — ({pa%r}a {7:7 6}7 {Za XO}7 5F7p7 X07 {T}),
where
op(p, e, Xo) = {(q, 2X0)},
6r(q,i,2) = 6n(q,1,2) =1{(q,Z22)},
6r(q,e,Z) = 6n(q,e,Z) = {(q,€)}, and
6r(q, 6, Xo) = {(r,€)}

The diagram for Pg is

e Z €
I, 2177

Start g, XgZX m g Xy /€
- 5 ®
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From Final State to Empty Stack

Theorem 6.11: Let L = L(Pr), for some
PDA Pr = (Q,=,T,8r,q0, Zo, F). Then 3 PDA
Py, such that L = N(Py).

Proof:. Let

Py = (QU{po,p}, =, T U{Xo},dn,Ppo, X0)

where 6 (po, €, Xo) = {(90,Z0X0)}, dn(p,€Y)
= {(p,e)}, for Y e TU{Xp}, and for all ¢ € Q,

a € ZU{e},Y €T :0n(q,a,Y) = 6p(q,a,Y),
and in addition Vq € F, and Y € I U{Xp} :
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We have to show that N(Py) = L(Pp).
(C-direction.) By inspecting the diagram.

(D-direction.) Let w € L(Pr). Then

(g0, w, Zo) F = (g, ¢, ),

for some g € F,a € I'*. Since ép C 4y, and
Theorem 6.5 says that Xg can be slid under
the stack, we get

(g0, w, ZoX0) = (g,¢,aXp).

The Py can compute:

(po, w, Xo) & (g0, w, ZoXo) H -~ (g, ¢, aXo) b = (p, e €).
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Equivalence of PDA’s and CFG’s

A language is

generated by a CFG
if and only if it is

accepted by a PDA by empty stack
if and only if it is

accepted by a PDA by final state

PDA by PDA by
empty stack final state

We already know how to go between null stack
and final state.
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From CFG’'s to PDA'’s

Given G, we construct a PDA that simulates Zé

We write left-sentential forms as

Ao

where A is the leftmost variable in the form.
For instance,

E
\(“i\f\)/

€T «
N—_——

tail

Let A« l:> xBa. This corresponds to the PDA
first having consumed x and having Ao on the
stack, and then on € it pops A and pushes £.

More fomally, let y, s.t. w = zy. Then the PDA
goes non-deterministically from configuration
(q,y, Aa) to configuration (q,vy, Ba).
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At (q,vy,Ba) the PDA behaves as before, un-
less there are terminals in the prefix of 3. In
that case, the PDA pops them, provided it can
consume matching input.

If all guesses are right, the PDA ends up with
empty stack and input.

Formally, let G = (V,T,Q,S) be a CFG. Define
Pq as

({Q}7T7 V U T7 67 q7 S)7

where

6(q,6,A) ={(¢,8) - A— B € Q},
for AeV, and

5(q7 a? a’) — {(Q7 e)}?

for a € T.

Example: On blackboard in class.
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Theorem 6.13: N(Pg) = L(G).
Proof:

(D-direction.) Let w € L(G). Then

S=71=>727= = =w

Let v;, = x;;. We show by induction on : that
b

S % Vi
then
*
(Q7was) = (Q7yi7ai>7

where w = x,y;.

204



Basis: For: = 1,71 = b; Thus 1 = ¢, and

y1 = w. Clearly (¢q,w,S) F (q,w, S).

Induction: IH is (q,w,S) K (q,vy;, ;). We have
to show that

(Q7yi7ai) = (qayi+17ai—|—l)
Now «; begins with a variable A, and we have
the form

TiAX = 410X
i Vi41

By IH Ay is on the stack, and y; is unconsumed.

From the construction of Py is follows that we

can make the move

(2, v, %) F (q, 9, Bx)-

If 8 has a prefix of terminals, we can pop them
with matching terminals in a prefix of y;, end-
ing up in configuration (q,¥y;4+1,a;4+1), Where
a;41 = Bx, which is the tail of the sentential

T;0X = Vi4-1-

Finally, since v, = w,*we have anp = €, and y, =
e, and thus (q,w,S) F (gq,¢,¢), i.e. w € N(Pg)
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(C-direction.) We shall show by an induction
on the length of Iik, that

(&) If (q,z,A) ¥ (q,¢,¢), then A S 2.

Basis: Length 1. Then it must be that A — ¢
is in G, and we have (q,¢) € 6(q,e,A). Thus
A e

Induction: Length is n > 1, and the IH holds
for lengths < n.

Since A is a variable, we must have

(C_[,CC,A) = (Q7x7Y1Y2'“Yk) R = (Q7€7€)
where A — Y1Yo---Y. is in G.
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We can now write = as xzyxo---xpn, according
to the figure below, where Y1 = B,Y> = a, and
Y3=0C.
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Now we can conclude that

*
(¢, ziTiq1 o, V) E (g, 41 - xp, €)

is less than n steps, for all i € {1,...,k}. If Y]
IS a variable we have by the IH and Theorem
6.6 that

Y, =
If Y; is a terminal, we have |x;| = 1, and Y; = «;.
Thus Y; = z; by the reflexivity of =.

The claim of the theorem now follows by choos-
ing A =S, and z = w. Suppose w € N(P).
Then (q,w,S) F (g,¢,¢), and by (&), we have
S & w, meaning w € L(Q).
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From PDA’s to CFG’s

Let's look at how a PDA can consume z =
x1xo - xp and empty the stack.

Y, %
Y, PL
Y, B 1
- - g | -4 H<
X % X

We shall define a grammar with variables of the
form [p;,_1Y;p;] representing going from p;_1 to
p; with net effect of popping Y;.
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Formally, let P = (Q,%,I,9,q0,Zp) be a PDA.
Define G = (V,X, R, S), where

V = {[pXq] : {p,q} CQ, X €eT}U{S}
R = {S — [q0Z0op] : p € Q}U
{laX7g] — a[rYiri] - [rp_1Yere]
a € > U{e},
{ri,..,m € Q,
(r,Y1Y2---Yy) € 0(q,a,X)}
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Example: Let's convert

e Z €
|, 2177

ar ()

Sy

PN — ({Q}v {7:7 6}7 {2}75]\77 q, Z)7

where §n(q,1,2) = {(q,22)},
and dn(q,e, Z) = {(q,e)} to a grammar

G = (V,{i,e}, R, S),

where V = {[q¢Zq], S}, and
R = {[qZq] — ilaZqllaZql, [aZq] — €}.

If we replace [¢Zq] by A we get the productions
S— Aand A — iAAle.
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Example: Let P = ({p,q},{0,1},{X, Zo},6,q, Zo),
where § is given by

1. 0(q,1,Zo) = {(q, X Zp)}

2. 6(q,1,X) ={(¢, XX)}

3. 6(q,0,X) ={(p,X)}

4. 6(q,e,X) = {(q,¢)}

5. 6(p,1,X) = {(p,e)}

6. §(p,0,Zo) = {(q,Z0)}

to a CFG.

212



We get G = (V,{0,1}, R, S), where

V = {[pXpl, [pXql, [pZop], [PZ04al, S}

and the productions in R are

S — [aZoql|laZop]

From rule (1):

From

qXq
(g X q]
g Xp.
(g X p]

9 Z0q]
qZ04q]
qZop)

— 1

qZop]

9 X qllgZoq!
g Xp,
— 1{qgXql|lqZop.

(g X p]

pZ0q]

pZop]
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From rule (3):

[¢Xq] — O[pXq]
[¢Xp] — O[pXp]

From rule (4):
[aXq] — €
From rule (5):
[pXp] — 1

From rule (6):

[pZoq] — O[qZpq]
[pZop] — O[qZop]
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Theorem 6.14: Let (G be constructed from a
PDA P as above. Then L(G) = N(P)

Proof:

(D-direction.) We shall show by an induction
on the length of the sequence F that

(#) If (¢, w,X) F (p,e,€) then [¢Xp] S w.

Basis: Length 1. Then w is an a or ¢, and

(p,e) € 6(q,w, X). By the construction of G we
have [¢Xp] — w and thus [¢Xp] = w.
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Induction: Length isn > 1, and & holds for
lengths < n. We must have

(Q7w7X) - (TO,%‘,Y]_YQ"'Yk) SRR (p7€7€)7

where w = ax or w = ex. It follows that
(ro,Y1Y>---YL) € 8(q,a,X). Then we have a
production

[gX7i] — a[roY1r1] - [rp—1Y57il,
for all {rq,...,7.} C Q.
We may now choose r; to be the state in
the sequence = when Y; Is popped. Let w =

wiwsy - - - wg, Where w; is consumed while Y; is
popped. Then

*
(ri—lawiayi) = (7“7;,6,6).
By the IH we get

[ri_1, Y, ;] = w;
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We then get the following derivation sequence:
[gX 7] = alroYiri] - [rp_1Yire] =
awq[r1Yaro][raYara] - -« [rg_1Yirg] =

*
awiwo[roYarz] - [rp_1Yirr] =

awiwWo -« + - WL = W
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(D-direction.) We shall show by an induction
on the length of the derivation = that

(V) If [¢Xp] = w then (q,w, X) F (p, ¢ €)

Basis: One step. Then we have a production
[¢Xp] — w. From the construction of G it
follows that (p,e) € 6(q,a, X), where w = a.
But then (g, w, X) - (p, e, €).

Induction: Length of = isn > 1, and Q holds
for lengths < n. Then we must have

[qX ] = a[roYiri][riYors] - - [rp_1Yirs] = w

We can break w into aws - - - wy, such that [r;_1Y;r;] =
w;. From the IH we get

*
(7“7;_]_, Wy, Y:L) = (rfb €, 6)
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From Theorem 6.5 we get

k
(rim1, Wiw;4q - W, YiYiqq - Yg) F
(riswigq Wk, Yiqq - Yg)

Since this holds for all i € {1,...,k}, we get
(¢, awqws -+ - wy, X) F

(ro,wiwy -+ wg, Y1Ya -+ Yy) F
(ri,wo- - wg, Y2+ Y3) F

(ro, w3+ wg, Y3+ Y3) F

(p, €, €).
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Deterministic PDA'sS

A PDA P =(Q,x,I,d,q0,Zo, F) is determinis-
tic iff
1. 6(q,a, X) is always empty or a singleton.

2. If §(q,a, X) is nonempty, then (g, e, X) must
be empty.

Example: Let us define

Lwcwr == {U)CU]R LW E {O, 1}*}
Then Lycwr 1S recognized by the following DPDA

0,2,/02,
1,2,/12,
0, 0/00
0,1/01
1,0/10 0,0
1,1/11 1
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We’'ll show that Regularc L(DPDA) Cc CFL

Theorem 6.17: If L is reqular, then L = L(P)
for some DPDA P.

Proof:. Since L is regular there is a DFA A s.t.
L =L(A). Let

A=(Q,%,64,q0,F)
We define the DPDA

P=(Q,x,{Zo},dp,qo0, Zo, F),
where

op(q,a, Zg) = {(64(q;a), Zp)},
for all p,q € Q, and a € Z.

An easy induction (do it!) on |w| gives

* —~
(g0, w, Zg) F (p,€,Zp) & 04(q0, w) =p

The theorem then follows (why?)
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What about DPDA’s that accept by null stack?

They can recognize only CFL’s with the prefix
property.

A language L has the prefix property if there
are no two distinct strings in L, such that one
is a prefix of the other.

Example: Lycwr has the prefix property.

Example: {0}* does not have the prefix prop-
erty.

Theorem 6.19: L is N(P) for some DPDA P
if and only if L has the prefix property and L
is L(P") for some DPDA P'.

Proof: Homework
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e We have seen that RegularC L(DPDA).

e Lycwr € L(DPDA)\ Regular

e Are there languages in CFL\L(DPDA).
Yes, for example Lywr.

e \What about DPDA’'s and Ambiguous Gram-
mars?

Lywr has unamb. grammar S — 0S0|1S51]e
but is not L(DPDA).

For the converse we have

Theorem 6.20: If L = N(P) for some DPDA
P, then L has an unambiguous CFG.

Proof: By inspecting the proof of Theorem
6.14 we see that if the construction is applied
to a DPDA the result is a CFG with unique
leftmost derivations.
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Theorem 6.20 can actually be strengthen as
follows

Theorem 6.21: If L = L(P) for some DPDA
P, then L has an unambiguous CFG.

Proof: Let $ be a symbol outside the alphabet
of L, and let ' = L$%.

It is easy to see that L’ has the prefix property.

By Theorem 6.20 we have L' = N(P’) for some
DPDA P’.

By Theorem 6.20 N(P’) can be generated by
an unambiguous CFG G’

Modify G’ into G, s.t. L(G) = L, by adding the
production

$— ¢

Since G’ has unique leftmost derivations, G’
also has unique Im’s, since the only new thing
we're doing is adding derivations

wd = w
Im

to the end.
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Properties of CFL's

o Simplification of CFG's. This makes life eas-
ier, since we can claim that if a language is CF,
then it has a grammar of a special form.

e Pumping Lemma for CFL's. Similar to the
regular case. Not covered in this course.

e (Closure properties. Some, but not all, of the
closure properties of regular languages carry
over to CFL’s.

e Decision properties. We can test for mem-
bership and emptiness, but for instance, equiv-
alence of CFL's is undecidable.
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Chomsky Normal Form

We want to show that every CFL (without ¢)
is generated by a CFG where all productions
are of the form

A— BC, or A —a

where A, B, and C are variables, and a is a
terminal. This is called CNF, and to get there
we have to

1. Eliminate useless symbols, those that do
not appear in any derivation S = w, for
start symbol S and terminal w.

2. Eliminate e-productions, that is, produc-
tions of the form A — e.

3. Eliminate unit productions, that is, produc-
tions of the form A — B, where A and B
are variables.

226



Eliminating Useless Symbols

e A symbol X is useful for a grammar G =
(V,T,P,S), if there is a derivation

S aXB 2w
G G

for a teminal string w. Symbols that are not
useful are called useless.

e A symbol X is generating if X % w, for some
weT*

e A symbol X is reachable if S % aX3, for
some {a,8} C (VUT)*

It turns out that if we eliminate non-generating
symbols first, and then non-reachable ones, we
will be left with only useful symbols.
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Example: Let G be
S — ABla, A —b

S and A are generating, B is not. If we elimi-
nate B we have to eliminate S — AB, leaving
the grammar

S—a, A—Db

Now only S is reachable. Eliminating A and b
leaves us with

S —a
with language {a}.
OTH, if we eliminate non-reachable symbols

first, we find that all symbols are reachable.
From

S — ABla, A —b

we then eliminate B as non-generating, and
are left with

S—a, A—Db

that still contains useless symbols
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Theorem 7.2: Let G = (V,T,P,S) be a CFG
such that L(G) # 0. Let Gy = (Vq,T4,P1,S)
be the grammar obtained by

1. Eliminating all nongenerating symbols and
the productions they occur in. Let the new
grammar be G, = (Vo,15, P>, S).

2. Eliminate from G- all nonreachable sym-
bols and the productions they occur in.

The G; has no useless symbols, and
L(G1) = L(G).
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Proof: We first prove that G1 has no useless
symbols:

Let X remain in V3UTy. Thus X = w in Gy, for
some w € T*. Moreover, every symbol used in
this derivation is also generating. Thus X = w
in Go also.

Since X was not eliminated in step 2, there are
a and 3, such that S = aXg8 in Go. Further-
more, every symbol used in this derivation is
also reachable, so S = aXg in G1.

Now every symbol in a X3 is reachable and in
VouUuls O V7 UTq, so each of them is generating
in Go.

The terminal derivation aX3 = zwy in Gs in-
volves only symbols that are reachable from S,
because they are reached by symbols in aXg.
Thus the terminal derivation is also a dervia-
tion of GG1, i.e.,

S S aXfB = zwy

in Gq.
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We then show that L(G1) = L(G).
Since P; C P, we have L(G1) C L(G).

Then, let w € L(G). Thus S % w. Each sym-
bol is this derivation is evidently both reach-

able and generating, so this is also a derivation
of 4.

Thus w € L(G1).
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We have to give algorithms to compute the
generating and reachable symbols of G = (V, T, P, S).

The generating symbols g(G) are computed by
the following closure algorithm:

Basis: ¢(G) ==

Induction: If o« € ¢(G) and X — «a € P, then
9(G) == g(G) U {X}.

Example: Let G be S — ABla, A —b
Then first g(G) == {a, b}.

Since S — a we put S in ¢(G), and because
A — b we add A also, and that's it.
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Theorem 7.4: At saturation, ¢g(G) contains
all and only the generating symbols of G.

Proof:

We'll show in class on an induction on the
stage in which a symbol X is added to ¢g(G)
that X is indeed generating.

Then, suppose that X is generating. Thus
X % w, for some w € T*. We prove by induc-

tion on this derivation that X € g(G).

Basis: Zero Steps. Then X is added in the
basis of the closure algo.

Induction: The derivation takes n > 0 steps.
Let the first production used be X — «. Then

X:>a;>w

and a = w in less than n steps and by the IH
a € g(G). From the inductive part of the algo
it follows that X € ¢(G).
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The set of reachable symbols r(G) of G =
(V,T,P,S) is computed by the following clo-
sure algorithm:

Basis: r(G) == {S}.

Induction: If variable Aer(G) and A - a € P
then add all symbols in o to r(G)

Example: Let G be S — ABla, A —b
Then first r(G) == {S}.

Based on the first production we add {A, B,a}
to r(G).

Based on the second production we add {b} to
r(G) and that's it.

Theorem 7.6: At saturation, r(G) contains
all and only the reachable symbols of G.

Proof: Homework.
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Eliminating e-Productions

We shall prove that if L is CF, then L\ {e} has
a grammar without e-productions.

Variable A is said to be nullable if A= e.

Let A be nullable. We'll then replace a rule
like

A — BAD
with
A— BAD, A — BD

and delete any rules with body e.

We'll compute n(G), the set of nullable sym-
bols of a grammar G = (V,T, P, S) as follows:

Basis: n(G) == {A: A—e€ P}

Induction: If {C1Cy---C,} € n(G) and A —
C1Co---Cy € P, then n(G) == n(G) U {A}.
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Theorem 7.7: At saturation, n(G) contains
all and only the nullable symbols of G.

Proof: Easy induction in both directions.

Once we know the nullable symbols, we can
transform G into G1 as follows:

e For each A — X1 Xo:--- X, € P with m < k&
nullable symbols, replace it by 2™ rules, one

with each sublist of the nullable symbols ab-
sent.

Exeption: If m = k we don't delete all m nul-
lable symbols.

e Delete all rules of the form A — e.
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Example: Let G be

S — AB, A — aAAle, B— bBBle

Now n(G) = {A,B,S}. The first rule will be-
come

S — AB|A|B
the second
A — aAA|aA|aAla
the third
B — bBB|bB|bBlb

We then delete rules with e-bodies, and end up
with grammar G :

S — AB|A|B, A — aAAlaAla, B — bBB|bB|b
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Theorem 7.9: L(G1) = L(G) \ {¢}.

Proof: We'll prove the stronger statement:

(1) A= win Gy ifandonly if w# e and A = w
in G.

C-direction: Suppose A = w in Gy1. Then
clearly w #= ¢ (Why?). We'll show by and in-
duction on the length of the derivation that
AZ win G also.

Basis: One step. Then there exists A — w
in G1. Form the construction of G4 it follows
that there exists A — « in GG, where « is w plus
some nullable variables interspersed. Then

A= o= uw

in (.
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Induction: Derivation takes n > 1 steps. Then

A= X1Xo--- X = win Gy

and the first derivation is based on a produc-
tion

A—Y{Ys Y

where m > k, some Y;'s are X;'s and the other
are nullable symbols of G.

Furhtermore, w = wiws - - - wg, and X; = w; in
(Gq1 in less than n steps. By the IH we have
X; = w; in G. Now we get

A?Y1Y2---Ym%>X1X2---Xk%wlwz---wkzw
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D-direction: Let A % w, and w # e. We'll show
by induction of the length of the derivation
that A = w in Gy.

Basis: Length is one. Then A — w is in G,
and since w # € the rule is in G1 also.

Induction: Derivation takesn > 1 steps. Then
it looks like

A?YlYQ---Ym%w
Now w = wiws - - - wm, and Y; % w; in less than

n steps.

Let X1Xo--- X}, be those Y;'s in order, such
that w; #Ze. Then A — X1 X5--- Xy is a rulein
G1q.

Now X1 X5 - Xg % w (Why?)
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Each X;/Y; % w; in less than n steps, so by

IH we have that if w # e then Y; & w; in Gy.
Thus

A= X1Xo-- X3 = w in Gy

The claim of the theorem now follows from
statement (#) on slide 238 by choosing A = S.
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Eliminating Unit Productions

A— B

IS a unit production, whenever A and B are
variables.

Unit productions can be eliminated.
Let's look at grammar

I - al|b|la|Ib|IO|I1
F—1|(F)

T— F|TxF
E—-T|E+T

It has unit productions £ — T, T — F, and
F— 1
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We'll expand rule E — T and get rules

E—-F E—>TxF

We then expand E — F' and get

E — I(E)|T x F

Finally we expand E — I and get

E—al|b|Ia|Ib|I0|I1|(E)|T*F

The expansion method works as long as there
are no cycles in the rules, as e.g. in

A—- B, B—-C,C—A

The following method based on unit pairs will
work for all grammars.
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(A, B) is a unit pair if A = B using unit pro-
ductions only.

Note: In A — BC, C — ¢ we have A = B, but
not using unit productions only.

To compute u(G), the set of all unit pairs of
G = (V,T,P,S) we use the following closure
algorithm

Basis: u(G) == {(A,A): AeV}

Induction: If (A,B) € u(G) and B —- C € P
then add (A,C) to u(G).

Theorem: At saturation, uw(G) contains all
and only the unit pair of G.

Proof:. Easy.
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Given G = (V,T,P,S) we can construct G; =
(V,T, Py,S) that doesn’t have unit productions,
and such that L(G1) = L(G) by setting

PP={A—a:a¢é¢V,B—a€c P, (A B)cu(@G)}

Example: Form the grammar of slide 242 we

get

Pair

Productions

(E, E)
(E,T)
(E, F)
(E, 1)
(T,T)
(T, F)
(T, 1)
(F, F)
(F, 1)
(I,1)

E— FE+4+T

E—TxF
E—al|b|la|Ib|I0|I1
T — T x F

T — (F)

T —a|b|la|Ib|I0|I1
F—al|b|la|Ib|I0|I1
I —-a|b|lla|lb|I0|I1

The resulting grammar is equivalent to the
original one (proof omitted).
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To “clean up” a grammar we can

Summary

1. Eliminate e-productions

2. Eliminate unit productions

3. Eliminate useless symbols

in this order.
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Chomsky Normal Form, CNF

We shall show that every nonempty CFL with-
out € has a grammar G without useless sym-
bols, and such that every production is of the
form

e A — BC, where {A,B,C} CT, or

o A— o, where AeV, and aecT.

To achieve this, start with any grammar for
the CFL, and

1. “Clean up” the grammar.

2. Arrange that all bodies of length 2 or more
consists of only variables.

3. Break bodies of length 3 or more into a
cascade of two-variable-bodied productions.
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e For step 2, for every terminal a that appears
in a body of length > 2, create a new variable,
say A, and replace a by A in all bodies.

Then add a new rule A — a.

e For step 3, for each rule of the form
A — B1By--- By,

k > 3, introduce new variables C1,C5,...CL_»,
and replace the rule with

A — B1Cy
Ci1 — By(s

Cr_—3 — Bp_2CL_»
1Bk

Ck—Q — Bk
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Illustration of the effect of step 3

@

A
/T
B1 B2 B

JANJAN A

(b)
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Example of CNF conversion

Let's start with the grammar (step 1 already
done)

E—SE+T|T«F|(E)|a|b|la|Ib|I0]|I1
T —TxF|(E)a|b|Ia|Ib|I0]|I1
F—(E) a|b|la|Ib|I0]|I1

I —al|b|la|Ib|I0|I1

For step 2, we need the rules

A—a, B—b272—0,0—1

P—+ M—xL—(,R—)

and by replacing we get the grammar

E — EPT |TMF |LER|a|b|IA|IB|IZ |10
T—-TMF|LER|a|b|IA|IB|IZ |10
F—LER|a|b|IA|IB|IZ|IO

I -al|b|IA|IB|IZ|IO
A—a,B—b27—0,0—1

P—+ M-—x*xL—(,R—)

250



For step 3, we replace

E — EPT by E — ECy,C1 — PT

E—-TMFT —TMEF by
E—-TC,,T —TCr,Cyr — MF

F — LER,T — LER,F — LER by
F— LC3, T — LC3, F — LC3,C3 — ER

The final CNF grammar is

E— ECL|TCy | LC3|a|b|IA|IB|I1Z |10
T —-TCy | LC3|al|b|IA|IB|IZ |10
F—LC3|al|lb|IA|IB|IZ|IO

I —-a|b|IA|IB|I1Z |10

Cq— PI,Cyo - MF,C3 — FER
A—a,B—b27—0,0—1

P—+ M—x*xL—(,R—)
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Closure Properties of CFL'’s

Consider a mapping
s — 287

where > and A are finite alphabets. Let w €&
> *, where w = ajas---an, and define

s(a1as---an) = s(ay).s(as).--- .s(an)
and, for L C ¥,
s(L) = U s(w)
weL

Such a mapping s is called a substitution.

252



Example: ¥~ = {0,1}, A = {a, b},
s(0) ={a"b" :n > 1},s(1) = {aa, bb}.

Let w=01. Then s(w) = s(0).s(1) =
{a™"aa :n > 1}U {a"b" T2 :n > 1}

Let L ={0}*. Then s(L) = (s(0))* =
{a™1b"1q"™2p™2 . .. a"kD"k 1 k> 0,n; > 1}

Theorem 7.23: Let L be a CFL over >, and s
a substitution, such that s(a) is a CFL, Va € 3.
Then s(L) is a CFL.
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We start with grammars
G — (V7 Z? P7 S)
for L, and

GCL — (VCL7 TCL7 PCL7 SCL)

for each s(a). We then construct
G'=W'T1, P, S

where
V/ — (UaEZ Va) UV
T = Uaes Ta

P’ = Uges Pu plus the productions of P
with each a in a body replaced with sym-
bol S,.
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Now we have to show that
o L(G") = s(L).

Let w € s(L). Then Jx = ajas---an in L, and
dx; € s(a;), such that w = z125 - - Tn.

A derivation tree in G’ will look like

S
Sa1 Sa2 San
X1 % *n

Thus we can generate Sq;Sa, - Sa, in G’ and
form there we generate xq1xo---xp, = w. Thus
w e L(G").
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Then let w € L(G"). Then the parse tree for w
must again look like

Now delete the dangling subtrees. Then you
have vield

SaySas -+ Say,

where aias---an € L(G). Now w is also equal
to s(ajas---ap), which is in S(L).
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Applications of the Substitution Theorem

Theorem 7.24: The CFL's are closed under
(7) : union, (47) : concatenation, (7i7) : Kleene
closure and positive closure 4+, and (iv) : ho-
momorphism.

Proof: (i¢): Let L1 and L, be CFL's, let L =
{1,2}, and 8(1) = L]_,S(Q) = Lo».
Then L1 UL, = s(L).

(i1) : Here we choose L = {12} and s as before.
Then Lqy.Ly, = S(L)

(4ii) : Suppose Ly is CF. Let L = {1}*,5(1) =
Ly. Now Lj = s(L). Similar proof for +.

(7v) : Let L1 be a CFL over 3>, and h a homo-
morphism on 2. Then define s by

a+— {h(a)}
Then h(L) = s(L).
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Theorem: If L is CF, then so in L.

Proof: Suppose Lisgenerated b G = (V,T,P,S).
Construct GE = (v, T, PE,S), where

Pi=fA—>af': 4> aepP}

Show at home by inductions on the lengths of
the derivations in G (for one direction) and in
GTt (for the other direction) that (L(G))! =
L(GH).
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Let Ly = {0™1"2" :n > 1,5>1}. The Ly is CF
with grammar
S — AB

A — 0A1|01
B — 2B|2

Also, Lo = {0%1"2™ : n > 1,i > 1} is CF with
grammar

S — AB
A — OA|O
B — 1B2|12

However, L1 N Ly = {0"1"2" : n > 1} which is
not CF (see the handout on course-page).
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Theorem 7.27: If L is CR, and R regular,
then LN R is CF.

Proof. Let L be accepted by PDA

P=(@Qp,x,I,0p,qp, Zo, Fp)
by final state, and let R be accepted by DFA

A= (QA, Z, 5A7 dA, FA)

We'll construct a PDA for L N R according to
the picture

FA
state

Y

Input AND > Accept/
reject

~| PDA
state

Stack
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Formally, define

P/: (QPXQA,,Z,F,(S,(C]P,C]A),ZO,FPXFA)

where

3((q,p),a, X) = {((r,04(p,a)),7) : (r,7) € 6p(g,a, X)}

Prove at home by an induction If, both for P
and for P’ that

(qpawazO) lik (Q7€77) in P

if and only if

((ap,a),w, Z0) F ((4,8(pa, ), €,) in P’

The claim the follows (Why7?)
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Theorem 7.29: Let L,Lq,L> be CFL's and R
regular. Then

1. L\Ris CF

2. L is not necessarily CF

3. L1\ Lo is not necessarily CF

Proof:

1. R is reqular, LN R is reqular, and LN R =
L\ R.

2. If L always was CF, it would follow that

LiNLy=LqUL»>

always would be CF.

3. Note that >* is CF, so if L1\ Lo was always
CF, then so would ~*\ L = L.
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Inverse homomorphism

Let h: X — ©* be a homom. Let L C ©*, and

define 1
h™ (L) ={we*: h(w) € L}

Now we have

Theorem 7.30: Let L be a CFL, and h a
homomorphism. Then h~1(L) is a CFL.

Proof: The plan of the proof is

Buffer
a h(a)
Input —— ™| h ——

y

PDA » Accept/
state reject
A
Y

Stack
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Let L be accepted by PDA
P=(Q,9,I6q0, 20, F)
We construct a new PDA
P'=(Q,%,T,d, (q0,€), Zo, F x {e})

where
Q' ={(q,x) : q € Q,x € suffix(h(a)),a € =}

0'((q,€),a,X) = {((q,h(a)),X) : € # a €
>.geQ, X erl}

6" ((g,bx),¢,X) = {((p,z),7) : (p,v) € 6(q,b,X),b €
TU{e}t,qge @, X el}

Show at home by suitable inductions that

e (qo,h(w),Zo) F (p,e,v) in P if and only if
* .
((q0,€),w, Zg) F ((p,€),€,7) in P’
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Decision Properties of CFL'’s

We'll look at the following:

e Complexity of converting among CFA's and
PDAQ’s

e Converting a CFG to CNF
e Testing L(G) =0, for a given G
e Testing w € L(G), for a given w and fixed G.

e Preview of undecidable CFL problems
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Converting between CFA’s and PDA's

e Input size is n.

e n IS the total size of the input CFG or PDA.

The following work in time O(n)

1. Converting a CFG to a PDA  (slide 203)

2. Converting a ‘“final state” PDA
to a “null stack” PDA (slide 199)

3. Converting a “null stack” PDA
to a ‘“final state” PDA (slide 195)
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Avoidable exponential blow-up

For converting a PDA to a CFG we have
(slide 210)
At most n3 variables of the form [pXg¢]

If (I‘,Y1Y2 e Yk) c 5(q, CL,X)}, we'll have O(n”)
rules of the form

[aX7] — alrYiry] - [rp_1Yergl

e By introducing k—2 new states we can mod-
ify the PDA to push at most one symbol per
transition. Illustration on blackboard in class.

267



e Now, k will be <2 for all rules.
e Total length of all transitions is still O(n).

e Now, each transition generates at most n2
productions

e Total size (and time to calculate) the gram-
mar is therefore O(n3).
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Converting into CNF

Good news:

1. Computing r(G) and ¢g(G) and eliminating
useless symbols takes time O(n). This will
be shown shortly

(slides 229,232,234)

2. Size of u(G) and the resulting grammar
with productions Pj is O(n?)

(slides 244,245)

3. Arranging that bodies consist of only vari-
ables is O(n)

(slide 248)

4. Breaking of bodies is O(n) (slide 248)
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Bad news:

e Eliminating the nullable symbols can make
the new grammar have size O(2")

(slide 236)
The bad news are avoidable:

Break bodies first before eliminating nullable
symbols

e Conversion into CNF is O(n?)
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Testing emptiness of CFL'’s

L(G) is non-empty if the start symbol S is gen-
erating.

A naive implementation on ¢g(G) takes time
O(n?).

g(G) can be computed in time O(n) as follows:

Generating?

Al ?
B | yes
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Creation and initialzation of the array is O(n)

Creation and initialzation of the links and counts
is O(n)

When a count goes to zero, we have to

1. Finding the head variable A, checkin if it
already is "yes” in the array, and if not,
queueing it is O(1) per production. Total
O(n)

2. Following links for A, and decreasing the
counters. Takes time O(n).

Total time is O(n).
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we L(G)?

Inefficient way:

Suppose G is CNF, test string is w, with |w| =
n. Since the parse tree is binary, there are
2n — 1 internal nodes.

Generate all binary parse trees of G with 2n—1
internal nodes.

Check if any parse tree generates w
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CYK-algo for membership testing

The grammar G is fixed
Input iIs w =ajas---an

We construct a triangular table, where X;; con-
tains all variables A, such that

*
A ? A;Qi4q - G5

X15

><14 ><25

X13 X24 X35

X12 x23 X34 X45
Xll X22 X33 X44 X55
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To fill the table we work row-by-row, upwards

The first row is computed in the basis, the
subsequent ones in the induction.

Basis: X;;, == {A: A — q; is in G}
Induction:

We wish to compute X,L-j, whichisinrow j3 —7 4 1.

A€ Xijv hi

Aéaiai—l—l---aj, i

for some kK < j, and A — BC, we have

B é A1 " Qs and Cé Ap4 10,42 " - Gy, if

B € Xikr and C & Xk]
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Example:

(G has productions

S AB|BC
BAla
CClb

ABla

Q& »
Ll

{SAG
{SAG
B {B
{sA {8 {SG {SA
B {AG {AG {B {AG
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To compute Xz-j we need to compare at most
n pairs of previously computed sets:

(Xii» Xi=1,5), (Xi 41, Xig25), - (X5 j—1, Xjjj)

as suggested below

For w = ai---an, there are O(n2) entries XZj
to compute.

For each X;; we need to compare at most n
pairs (Xig, Xp+1,5)-

Total work is O(n3).
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Preview of undecidable CFL problems

The following are undecidable:

1. Is a given CFG G ambiguous?

2. Is a given CFL inherently ambiguous?

3. Is the intersection of two CFL's empty?

4. Are two CFL's the same?

5. Is a given CFL universal (equal to >*)7
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