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Motivation

•Mining association rules is an important technique for discovering
meaningful patterns in transaction databases.

– Example: diapers ⇒ beer

– Applications: product assortment decisions, adapting promotional
activities, personalized product recommendations, adaptive user
interfaces

• Current literature focuses on the properties of algorithms.

•We will discuss properties of

– transaction data sets and

– interest measures

from a probabilistic point of view.
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Association Rules

An association rule is a rule of the form X ⇒ Y , where X and Y are
two disjoint sets of items (itemsets).

Rule selection with threshold on interest measures:

• Support: fraction of transactions containing an itemset

• Confidence: probability of seeing Y under the condition that the
transactions also contain X

Found rules are often ranked by:

• Lift: how many times more often X and Y occur together than
expected if they where statistically independent
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A simple probabilistic framework for
transaction data

Transactions occur following a Poisson process

time

Tr1Tr2 Tr3 Tr4Tr5 Trm-2 Trm-1 Trm0 t

We analyze transactions which are recorded in a fixed time interval of
length t.

The number of transactions m in the time interval is then poisson
distributed with parameter θt:

P (M = m) =
e−θt(θt)m

m!
(1)
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A simple probabilistic framework (cont’d)

• n independent items L = {l1, l2, . . . , ln},

• with each having a fixed success probabilities to occur in a transaction
given by the vector p = (p1, p2, . . . , pn).

Following the framework: ci, the observed number of transactions item
li is contained in, can be interpreted as a realization of a random variable
Ci.

Under the condition of a fixed number of transactions m this random
variable has a binomial distribution:

P (Ci = ci|M = m) =

(
m

ci

)
pci

i (1− pi)
m−ci (2)
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A simple probabilistic framework (cont’d)

Since for a fixed time interval t the number of transactions m is not
fixed, the unconditional distribution gives:

P (Ci = ci) =

∞∑
m=ci

P (Ci = ci|M = m) · P (M = m)

=

∞∑
m=ci

(
m

ci

)
pci

i (1− pi)
m−ci

e−θt(θt)m

m!

=
e−θt(piθt)

ci

ci!

∞∑
m=ci

((1− p)θt)m−ci

(m− ci)!

=
e−piθt(piθt)

ci

ci!

(3)

which has a Poisson distribution with parameter λi = piθt.
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A simple probabilistic framework (cont’d)

Representation of transaction data as a binary incidence matrix:

items

tr
an

sa
ct

io
ns

 l1        l2         l3        ...      ln

Tr1         0       1         0         ...      1 

Tr2         0       1         0         ...      1 

Tr3         0       1         0         ...      0 

Tr4         0       0         0         ...      0 
.             .        .          .                   .
.             .        .          .                   .
.             .        .          .                   .
Trm-1      1        0        0         ...      1 

Trm         0        0        1         ...      1 

.   .   .

c 99    201        7         ...    411  

p 0.005  0.01   0.0003   ...   0.025 
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Simulation

For simplicity we will assume for the following simulation that the
parameters in λ are chosen from a single gamma distribution with
parameters k = 0.75 and a = 250.

We will simulate the counts ci, for n = 200 different items over a t = 30
day period with transaction intensity θ = 300 transactions per day.

> m <- rpois(1, theta * t)
[1] 8885
> p <- sort(rgamma(n, shape = k, scale = a)/m,
+ decreasing = TRUE)

Now we can simulate the transactions in the database by m Bernoulli
trials for each of the n items and calculate the count vector c.

> Tr <- matrix(rbinom(m * n, 1, p), ncol = n, byrow = TRUE)
> c <- (apply(Tr, 2, sum))
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Simulation (cont’d)

We can directly calculate the support of each item from the transaction
counts.

> supp1 <- c/m
> plot(supp1, type = "h", xlab = "items",
+ ylab = "support")
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Simulation (cont’d)

Next, we extend the framework to the occurrences of 2-itemsets with a
symmetric n× n count matrix c2 and a support matrix (supp2):

> c2 <- sapply(1:n, function(i) {
+ apply(Tr[, i] & Tr[, 1:n], 2, sum)})
> diag(c2) <- NA

> supp2 <- c2/m

> persp(supp2, expand = 0.5, ticktype = "detailed",
+ border = 0, shade = 1, zlab = "support",
+ xlab = "items", ylab = "items")
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Implications for confidence

Confidence is defined by

conf(X ⇒ Y ) =
supp(X + Y )

supp(X)
. (4)

From our 2-itemsets we can generate rules of the from li ⇒ lj, where
i, j = 1, 2, . . . , n and i 6= j. We calculate confidence for the n(n− 1)
possible rules in the data set.

> conf2 <- supp2/supp1

> persp(conf2, expand = 0.5, ticktype = "detailed",
+ border = 0, shade = 1, zlab = "confidence",
+ xlab = "items", ylab = "items")
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Implications for confidence (cont’d)

• Confidence values are generally very low which reflect the fact that
there are no associations in the data.

• Some rules with confidence of one. However, left-hand-sides (X) have
low support.

• Confidence increases with the item in the right-hand-side Y of the rule
getting more frequent.

The fact that confidence systematically favors some rules makes the
measure problematic when it comes to ranking rules.
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Implications for lift

Typically, rules mined using minimum support (and confidence) are filtered or
ordered using their lift value. The measure lift is defined as:

lift(X ⇒ Y ) =
conf(X ⇒ Y )

supp(Y )
(5)

A lift value close to 1 indicates that the items are co-occurring in the database
as expected under independence.

> lift <- conf2/matrix(supp1, ncol = n, nrow = n,
+ byrow = TRUE)

> persp(lift, expand = 0.5, ticktype = "detailed",
+ border = 0, shade = 1, zlab = "lift",
+ xlab = "items", ylab = "items")

> length(which(lift > 2))
[1] 3424
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Implications for lift (cont’d)

To counter the problem with extremely high lift values, we discard all
2-itemsets which do not satisfy a minimum support of 0.1%.

> min_supp <- 0.001
> length(lift[supp2 >= min_supp])
[1] 7096

> lift[supp2 < min_supp] <- 1

> persp(lift, expand = 0.5, ticktype = "detailed",
+ border = 0, shade = 1, zlab = "lift",
+ xlab = "items", ylab = "items")

> length(which(lift > 2))
[1] 130
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Implications for lift (cont’d)

• Lift performs poorly to filter random noise in transaction data
especially if for relatively rare items.

• Lift has a tendency to produce higher values for rules with items close
to minimum support.

This makes using lift problematic for ranking discovered rules.
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New measure: hyperlift

• The n × n co-occurrence matrix can be modeled by n2 random
variables Ci,j.

• The framework results in hypergeometric distributions for the Ci,js
(urn model).

• Using the expected value of Ci,j lift can be rewritten as:

lift(li ⇒ lj) =
P (li + lj)

P (li)P (lj)
=

ci,j

E[Ci,j]
(6)

• As a more conservative approach we use quantile Qδ[Ci,j] instead of
the expected value.

hyperlift(li ⇒ lj) =
ci,j

Qδ[Ci,j]
. (7)
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New measure: hyperlift (cont’d)

Calculating hyperlift for δ = 0.99:

> calc_hyperbase <- function(ci, cj) {
+ qhyper(0.99, m = cj, n = m - cj, k = ci)}

> hyperlift <- c2/outer(c, c, FUN = calc_hyperbase)
> hyperlift[is.infinite(hyperlift)] <- NA

> persp(hyperlift, shade = 1, ticktype = "detailed",
+ border = 0, expand = 0.5, zlab = "hyperlift",
+ xlab = "items", ylab = "items")

> length(which(hyperlift > 2))
[1] 2
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New measure: hyperlift (cont’d)

• Generally smaller than 1 and more evenly distributed than lift.
Indicates that hyperlift filters the random co-occurrences better than
lift.

• Hyperlift shows a weak systematic dependency to favor rules with
more frequent items.
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Comparing lift and hyperlift on a grocery
database

• 1 month of real-world point-of-sale transaction data from a local
grocery outlet with

•m = 9835 transaction and

• n = 169 categories.

• Support, confidence and lift distributions look almost identical to the
simulated data.
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Lift for 2-itemsets for items with support of 0.1% in the grocery database
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Hyperlift for 2-itemsets for items in the grocery database
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Comparing lift and hyperlift (cont’d)

Top 10 rules (ordered by lift, support = 0.001)

l_i l_j supp lift
20 mayonnaise mustard 0.001423 12.965
8 Instant food products hamburger meat 0.003050 11.421
15 softener detergent 0.001118 10.600
16 liquor red/blush wine 0.002135 10.025
6 flour sugar 0.004982 8.463
4 popcorn salty snack 0.002237 8.192
11 processed cheese ham 0.003050 7.071
9 sauces hamburger meat 0.001220 6.684
3 meat spreads cream cheese 0.001118 6.605
14 house keeping products detergent 0.001017 6.346
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Comparing lift and hyperlift (cont’d)

Top 10 rules (ordered by hyperlift, no support)

l_i l_j supp hyperlift lift
11 Instant food products hamburger meat 0.0030 4.286 11.421
9 flour sugar 0.0049 4.083 8.463
15 liquor red/blush wine 0.0021 3.500 10.025
* 17 cooking chocolate baking powder 0.0007 3.500 15.826
18 mayonnaise mustard 0.0014 3.500 12.965
6 processed cheese white bread 0.0041 3.154 5.975
7 popcorn salty snack 0.0022 3.143 8.192
13 processed cheese ham 0.0030 3.000 7.071
3 liquor bottled beer 0.0046 2.875 5.241
14 softener detergent 0.0011 2.750 10.600
8 baking powder sugar 0.0032 2.667 5.432
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Comparing lift and hyperlift (cont’d)

• All rules for lift (with support) and hyperlift make intuitively sense.

• Rules with high hyperlift have potentially also high lift.

• Hyperlift selects rules with support varying from very rare to relatively
frequent (the tendency of hyperlift to favors rules with more frequent
items seems not too strong).

• Hyperlift is also able to deal with very infrequent rules.
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Conclusion

• Interest measures are systematically influenced by the frequencies of
items in the corresponding itemsets or rules.

• Lift performs poorly to filter random noise.

• The presented framework provides many possibilities for further
research:

– Adapt hyperlift to finding substitutes (instead of complements).

– Analyze systematic influence of the occurrence frequency of items
on the hyperlift measure.

– Use p-value instead of hyperlift.

– Expand model to itemsets of size > 2.

– Model dependencies between items.
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