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Motivation: Recommender Systems

e Produce item-to-item recommendations for Web Sites (e-commerce).

- "Customers who bought these items also bought ..."
- Displaying recommendations is virtually without additional cost.

- Recommendations can help to simulate a virtual "shopping
experience."

- Shopper can be anonymous (no shopping history known)

e Recommendations based on online transaction data:

- Purchases in Web stores (e.g., Amazon).

- Document downloads in digital libraries (e.g., Elsevier's science
direct).

- Browsing a directory service (e.g., Google Directory, dmoz).
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Association Rules: Problem definition

e Mining association rules from market basket data was first introduced
by Agrawal et al. [1].

e The problem is to mine implications of the form X = Y from a data
base. where X,Y C [ and X NY = () are called the antecedent
and the consequent of the rule.

e The data base is a set of transactions D = {711, 15,...,T;} where
each transaction contains a subset of the set of the available items

I ={i1,io ... in}.

e Measures of significance and interest are assigned to itemsets and
rules with the aim to select only rules that satisfy constraints based
on these measures.
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Assoc. Rules: Measures of significance and interest

For the definitions we use estimated probabilities. For Z C [

P(Z) = CO”U,’TZL;’(Z>

where count(.) denotes the number of occurrences of an itemset and | D] is
the number of transactions in the data base.

Agrawal et al. [1] define two measures for association rule mining:
supp(Z) = P(Z)
PXUY) supp(XUY)
P(X) supp(X)

Support and confidence are often also used as the absolute number of
transactions (e.g., supp®*(Z) = count(Z))

conf(X=Y)=PY | X)=
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Assoc. Rules: The minimum support constraint

An itemset Z C [ is only considered significant if
supp(Z) = o

where o is a user defined minimum support constraint. £ is then called
a frequent itemset or large itemset. F = {Z C [I|supp(Z) > o} is the
set of all frequent itemsets.
Rational:
e [tems that appear more often in the data base are more important
(e.qg., they are responsible for a higher sales volume).

e Support is downward closed (antimonotonicity) and therefore can be
used for reducing (pruning) the search space P(I) (search tree).

Problems:

e Rare item problem (infrequently purchased expensive items contribute
most to the store’s overall earnings).

e o Is set arbitrarily without knowledge of error rates.
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Assoc. Rules: Minimum confidence constraint

A minimum confidence constraint vy is used to generate only interesting
rules from the frequent itemsets with

conf(X =Y) >y
where Z € F, X C ZandY =7\ X.

Rational: conditional probability, directed

Problems:

e Sensitivity to the frequency of the consequent (a higher count for Y
directly translates into a higher confidence value).

® 7y is also set arbitrarily.
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A simple stochastic item usage model

Base rule mining on a stochastic item usage model because:

e Strong reqgularities were found in transaction data (e.g., market
baskets, web usage).

e Transaction data is known to have skewed distributions (i.e., problems
with support and confidence).

e The model provides estimates of error rates (percentage of accepted
spurious rules).

We suggest to use a simple and well-known mixture model for count data
(Gamma-Poisson model, NB model) as a benchmark to detect rules.
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A simple stochastic item usage model (cont.)

e Each item ¢ € [ has a latent rate A\ at which the item is used.
e Over all items this rate varies according to a continuous random variable A\.

® The distribution of R, the number of transactions the item ¢ is used in the
observed period, follows an independent Poisson process with the latent
rate \.
)\—re—)\
P R=rlA=XN=—forr=0,1,2,...

r!

® The distribution of the number of transactions for all items is then a Poisson

mixture model.

00 )\—7“6—)\

P(R=r) :/0 TdGA()\) forr=20,1,2 ..
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A simple stochastic item usage model (cont.)

e Heterogeneity in the usage frequency among items is accounted for by
the mixing distribution, a Gamma distribution with parameters a > 0
and £ > 0.

e—)\/a)\k:—l

a*T'(k)

fa(A) = for A > 0

e This results in a negative binomial (NB) distribution with parameters £
(exponents)anda = m / k (m represents the mean usage frequency).

. (k+7) a \ B
P(R=7r)=(14+a) CEEN0 (1+a> forr=20,1,2,...

P(R = 0) represents the proportion of items which were never used
In the observed period.
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A simple stochastic item usage model (cont.)

Although, the NB model (Gamma-Poisson model) simplifies reality
considerably with its assumed Poisson processes and the Gamma mixing
distribution, it is widely used in the literature for count data (see [3, pp.
223-224))

e accident statistics,

e birth-and -death processes,

® economics,

e library circulation,

e market research (repeat-buying theory),
e medicine and

e military applications.

Recently, it was also used in a similar form for Web usage [6].
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Fitting the model: Datasets

We use 4 datasets:

e WebView-1* and WebView-2* contain several months of
clickstream data for two e-commerce Web sites where each
transaction consists of the product detail views during a session.

e POS* Is a point-of-sale dataset containing several years of data.

e T1014D100K a widely used artificial dataset generated using the
procedure described in Agrawal and Srikant [Z].

* Provided by Blue Martini Software and used for the KDD Cup 2000 [4]
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Fitting the model. Datasets (cont.)

Example: Observed counts f(.) % |I| for 20,000 transactions from
WebView-1

count

I

I I I
500 1000 1500 2000

o_

r
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Fitting the model: Estimation

Parameter estimation by the method of moments
k=7%/(s" —T)
a=z/k

Challenges:

e Outliers in empiric data: Items with too high frequencies are not
covered by the model.

e Zero-class is unknown: Transaction data does not contain information
about items that are never used in the observation period.
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Fitting the model. Estimation (cont.)

Proposed solutions for the estimation challenges:

e Oultliers:
We discard outliers by trimming a number of the items with the highest
frequency from the three real-world datasets (e.g., 2.5% for the used
datasets).

e Unknown size of zero-class:
We iteratively used the method of moments to estimate the two
parameters of the NB distribution and the Minimum Y? Estimation
procedure to adapt the size of the zero-class.
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Fitting the model: Results

WebView-1 | WebView-2 POS T1014D100K
Observed items 344 2,720 1,080 869
Trimmed items 9 80 55 0)
Added zero-class 5 450 1,110 1
Used items 340 3,100 2,135 870
ltem occurrences 34,146 70,391 53,740 201,883
T 100.429 22.707| 25.171 232.050
s° 12027.676| 1050.2825104.761, 50511.647
k 0.846 0.502|  0.125 1.071
a 118.710 45.233| 201.368 216.667
X~ p-value 0.0844|  0.00216| 0.0312 0.144

Samples with 20,000 transactions
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The model and support

e We established that P(R = r), where R being a NB distributed
random variable (with parameters k£, a), models the probability of
items being used r = 0, 1, ... times in the dataset.

e Since the count r for an item ¢ is its absolute support, K represents
the distribution of support over all items 7 € 1.

e Therefore, the modeled proportion of items that pass a minimum

support constraint ¢ (frequent items) is given by Fr(c™) =
P(R > o).
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The model and support (cont.)
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The actual and predicted number of frequent items by minimum support.
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Deriving a frequency constraint

e \We now extend the model from single items to association rules
X = {yi}

where X C [ is a fixed antecedent and y; € [ \ X represents all
possible consequents.

e \We can count the absolute support of these rules
supp™* (X U {yi}) = count(X U {y;})

where we only need to consider the transactions that contain X .

e For all items y; which are independent of the items in X, we expect
that the distribution of the number of rules with a count r can be

modeled by a random variable R x with a NB distribution (assumption:
X[ < [T,
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Deriving a frequency constraint (cont.)

We estimated already the parameters k and @ for the distribution of R,
representing the counts of all individual items.

For the rule model we need the parameter estimates for the NB-
distributed random variable R x.

Rescaling the parameters for X

e The estimate scale parameter k is not effected.

e The parameter a = m/k has to be rescaled for the total number of
possible counts in the transactions that also contain X relative to the
number of possible counts in the whole dataset.

o a
a =
2 rep T
ax=a Y |T\X|
{TeD|TO>X}
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Deriving a frequency constraint (cont.)

e For rule mining we need to identify related items.

e If some items y; are related with the items in X, these items will have
a higher count in the transactions together with X than expected by
the model, I.e., related items move towards the tail of the distribution.

e The task is to identify a count threshold o (an absolute minimum
support on all rules with the antecedent X) that separates related
consequents in the distribution’s tail best from random items.
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Deriving a frequency constraint (cont.)

Precision is a possible quality measure widely used for information retrieval and
by the machine learning community [5]. Precision measures the proportion of
predicted positive cases that are correct.

(1— Fx(of") = (L= Fx(o§*)) _ 11— Fx(o§")

abs
) 1 — Ex (o) 1 — Fx(o9*)

prec(oy

where FX( ) is the cumulative distribution function of the estimated random

variable RX with parameters k and a x and FX( ) Is the cumulative distribution
function of the observations.

A suitable selection criterion for the threshold O“bs IS to allow only a percentage
of falsely accepted rules. E.g., if for an appllcatlon the maximum of acceptable
spurious rules is 5% we can use the constraint minimum precision 0 = 0.95

to select Jabs.

The task is to find for each X the consequents using a user defined precision
threshold 0.
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Deriving a frequency constraint: Example

# X={47961,47965}
# total items: 340
# k: 0.846, a: 0.159920927780706
# min precision: 0.95
# found r > 3
obs model prec

322 299.89726 -

11 34.98000 -
4.45142

O~NOOTRWNRFRLO™
RPONREFENOPR

0.58222
0.07718
0.01031
0.00139
0.00019
0.00003

0.88811
0.98515
0.99702
0.99947
0.99978
0.99997

# chosen consequents: 6

#Rules

[47961,47965) => {47953}, {47961,47965} => {47945}
[47961,47965} => {47973}, {47961,47965} => {47957}
[47961,47965) => {47949}, {47961,47965} => {47969}
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Search space and downward closure

Minimum support possesses the downward closure property:
All subsets of a frequent itemset must also be frequent, i.e., a frequent
itemset can only be constructed from frequent subsets.

This property is used to reduce the search space P () (which grows
exponentially with | I1).

The model uses 0 to chose an absolute minimum support aabs for all
rules with the antecedent X. The chosen consequents are

Yy = {y € I\ X|supp™(X U {y}) > 0%}

Generating new candidate antecedents by X' = {X U {y}|ly € Yx}
guaranties that supp™*(X’) > o4 for all X'.

At the same time for all the not chosen itemsets X" = {X U {y}|y €
I\ Yx} we have supp®(X") < o%*.

This follows directly from the downward closure property of support.
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Mining algorithms

Depth-first search algorithm:

NB-DFS(X, Dx, |I|, k,d’, d):

1. L =0

2. for all transactions ' € Dy do

3. forallye T\ X do

4.  if no tuple exists for y then add (y, 1) to set L;

5. else y.r++ for tuple (y,y.r) in set L;

6. end

7. end 3

8. Y = NB-Select(L, |I|, k,a’, §); n Select consequents
9. R={{X =vyllyeY}]

10. C' = NB-Gen(X,Y); 7 New antecedent candidates
11. for all ¢ € C' do

12. D.={T € Dx|c C T};n Conditional data base
13. R, = NB-DFS(c, D,, |1|,k, ', 0);

14. end

15. return RU - R;;
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Mining algorithms (cont.)

Select consequents:

NB-Select (L, |I|, k,a’,0):

1. Ty = 0;7rescale = 0;

2. for each tuple (y,y.r) € L do

3. nes|y.T]++; 11 Frequency of observed counts

4. it y.r > rpee then r,.,. = y.r; 1 Find maximum

5. rescale = rescale + y.r;

6. end

7. for (1 = 0;i < Iy i++) do

8. fnpli| = P(Ryp=ilk=k,a=ad xrescale);

9. end ~

10. fnB|Tmaz] = P(RNB 2 Tima|k = k,a = @' x rescale);
11. 7 = Tyar + 1; precision = 1;

12. while (precision > § A (r--) > 1) do

13 p— L —min{|1] 0 Fpli]/ S nanslil, 1)
14. end

15. return {y € L|y.r > r}; /1 Return set of consequents
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Mining algorithms (cont.)

Generate new candidates using a global repository R to avoid visiting nodes
(antecedents) several times:

NB-Gen (X, Y'):

1. C=A{clye Y ANc=XU{y} Acé& R};n Alsocheck the repository
2. for allc € C'do

3. addctoR;

4. end

5. return C
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Evaluation

1. Distribution of min. support over all rules and per antecedent size.

2. Impact of changing values of 9.

3. Algorithm complexity.

4. Quality evaluation:  Comparison with the support-confidence
framework (e.g., using ROC curves (Receiver Operating
Characteristic) and lift).
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Advantages and disadvantages

Advantages:

e Takes the structure of the dataset into account (count data has a
skewed distribution).

e Uses a user set threshold on error rates rather than on counts.

e Chooses a suitable absolute support for each set of rules with the
same antecedent which potentially gets smaller with antecedent size
(deals better with the rare item problem).

e Directly generates rules without frequent itemsets.
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Disadvantages:

e The model has to fit the data and parameters need to be estimated.

e The search space for rules is bigger than the search space for frequent
itemsets.

e Downward closure cannot be applied to reduce the search space
and, therefore, the concepts of maximal and closed itemsets are not
applicable.
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Open points and questions

1. NB parameter estimation (outliers, zero-class).

2. Downward closure property for antecedent generation.

3. Confidence bounds for count data.

4. Evaluation
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