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Cluster Analysis

Clustering assigns objects to groups (clusters) so that objects from the same
cluster are more similar to each other than to objects from other clusters.
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Applications

Unsupervised learning of structure in the data and summarizing data.

Areas: Business (market segmentation), biology (communities), social
networks, AI, etc.

Hahsler/Hornik (IDA@SMU/WU) Dissimilarity Plots IE Department Seminar 3 / 42



Assessment of Cluster Quality

Clustering assigns objects to groups (clusters) so that objects from the same
cluster are more similar to each other than to objects from other clusters.
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Assess the quality of a cluster solution

Typically judged by intra and inter-cluster similarities

Visualization for judging the quality of a clustering and to explore the cluster
structure
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Dendrograms

Dendrograms (Hartigan, 1967) for hierarchical clustering:
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Restriction

Dendrograms are only possible for hierarchical/nested clusterings.
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Projection-based Visualization

Project objects into 2-dimensional space with dimensionality reduction
techniques (e.g., PCA, MDS; Pison et al. (1999)).
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These two components explain 40.59 % of the point variability.
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Problems with dimensionality (figure to the right: MDS/32-dimensional data)
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Plot Quality Metrics

Visualize metrics calculated from inter and intra-cluster similarities to
judge cluster quality. For example, silhouette width (Kaufman and
Rousseeuw, 1990).

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.74

n = 75 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   20  |  0.73

2 :   17  |  0.67

3 :   15  |  0.80

4 :   23  |  0.75

→ Only a diagnostic tool for cluster quality
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Other Visualization Methods

Several other visualization methods (e.g., based on self-organizing maps
and neighborhood graphs, shadow plots, shadow-stars, stripes plots) are
reviewed and introduced in Leisch (2008, 2010).

Neighborhood graph

Typically hide structure within clusters or
are limited by the number of clusters and dimensionality of data.
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Dissimilarity Matrix Shading and CLUSION

Each cell of the (dissimilarity) matrix is represented by a gray value (Sneath and
Sokal, 1973; Ling, 1973; Gale et al., 1984). Initially matrix shading was used with
hierarchical clustering → heatmaps.
For graph-based partitional clustering: CLUSION (Strehl and Ghosh, 2003).
Uses coarse seriation such that “good” clusters from blocks around the main
diagonal.

CLUSION allows to judge cluster quality
but does not reveal the structure of the
data

→ Dissimilarity plots

Improve matrix shading/CLUSION
with (near) optimal placement of
clusters and objects within clusters
using seriation
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Seriation I

Part of combinatorial data analysis (Arabie and Hubert, 1996)

Aim: arrange objects in a linear order given available data and some
loss function in order to reveal structural information.

Problem: Requires to solve a discrete optimization problem
→ solution space grows by the order of O(n!)

Techniques:
1 Partial enumeration methods (currently solve problems with n ≤ 40)

I dynamic programming (Hubert et al., 1987)
I branch-and-bound (Brusco and Stahl, 2005)

2 Heuristics for larger problems
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Seriation II

Set of n objects O = {O1, O2, . . . , On}.
Symmetric dissimilarity matrix D = {dij}, where dij for
1 ≤ i, j ≤ n represents the dissimilarity between Oi and
Oj , and dii = 0 for all i.

Permutation function ψπ(D) = {dπ(i),π(j)} = PπDPT
π

reorders the objects in D by simultaneously permuting
rows and columns according to a permutation π.
(Pπ = ψπ(In))

A loss function L to evaluate a given permutation.

0   4   1   8
4   0   2   2
1   2   0   3
8   2   3   0

O3 O2 O1 O4
O3
O2
O1
O4

D

 π = {3, 2, 1, 4}

Optimization problem

minimize Z = L(ψπ(D))
s.t. ψπ ∈ Ψ (valid perm)

How should the loss function be defined?
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Column/Row Gradient Measures I

Perfect anti-Robinson matrix (Robinson, 1951): A symmetric matrix
where the values in all rows and columns only increase when moving away
from the main diagonal. Gradient conditions (Hubert et al., 1987):

within rows: dik ≤ dij for 1 ≤ i < k < j ≤ n;

within columns: dkj ≤ dij for 1 ≤ i < k < j ≤ n.

0   4   1   8
4   0   2   2
1   2   0   3
8   2   3   0

O1 O2 O3 O4

O1

O2

O3

O4

0   1   4   8
1   0   2   3
4   2   0   2
8   3   2   0

O1 O3 O2 O4

O1

O3

O2

O4

D Ψ(D)

Moves similar items (O1 and O3) closer together.
Note: Most matrices can only be brought into a near anti-Robinson form.
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Column/Row Gradient Measures II

Loss measure (quantifies the divergence from anti-Robinson form):

L(D) =
∑
i<k<j

f(dik, dij) +
∑
i<k<j

f(dkj , dij)

where f(·, ·) is a function which defines how a violation or satisfaction of a
gradient condition for an object triple (Oi, Ok and Oj) is counted.

Raw number: Violations minus satisfactions:

f(z, y) = sign(y − z) =


−1 if z > y;

0 if z = y;

+1 if z < y.

Weighted: Weight each satisfaction or violation by its magnitude
(absolute difference between the values):

f(z, y) = |y − z| sign(y − z) = y − z
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Hamiltonian Path Length

D is seen as a finite weighted graph G = (Ω, E) with Ω = {O1, O2, . . . , On}
and the weight wij for edge eij ∈ E represents dij .

An order Ψ can be seen as a Hamiltonian path through the graph.

Minimizing the path length results in a seriation optimal with respect to
dissimilarities between neighboring objects (Hubert, 1974; Caraux and
Pinloche, 2005).

Loss function:

L(D) =

n−1∑
i=1

di,i+1

0   4   1   8
4   0   2   2
1   2   0   3
8   2   3   0

O1 O2 O3 O4

O1

O2

O3

O4

D

O1

O2

O3

O4

This optimization problem is related to the traveling salesperson
problem (Gutin and Punnen, 2002) for which good solvers and efficient heuristics
exist.
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Seriation Criteria

Measure Definition

Gradient conditions
Anti-Robinson (AR) events (Chen, 2002)

∑
i<k<j f(dik, dij) + f(dkj , dij),

with f(x, y) = I(x > y)
AR deviations (Chen, 2002) with f(x, y) = |y − x| I(x > y)
Gradient measure (Hubert et al., 2001) with f(x, y) = −sign(y − x)
Weighted gradient measure (Hubert et al., 2001) with f(x, y) = −|y − x| sign(y − x)

Relative generalized Anti-Robinson events (RGAR) (Tien et al., 2008) 1
m

∑n
i=1

(∑
(i−w)≤i<k<j I(dik < dij)

+
∑

i<k<j≤(i+w) I(dkj > dij)
)
,

with window size 1 < w < n
and m = (2/3 − n)w + nw2 − 2/3w

3

Rank/dissimilarity agreement
Least squares criterion (Caraux and Pinloche, 2005)

∑n
i,j=1(dij − |i− j|)2

Inertia criterion (Caraux and Pinloche, 2005) −1×
∑n

i,j=1 dij(i− j)2
2-Sum criterion (Barnard et al., 1993)

∑n
i,j=1

1
1+dij

(i− j)2

Linear seriation criterion (LS) (Hubert and Schultz, 1976) −1×
∑n

i,j=1 dij |i− j|
Banded anti-Robinson form (BAR) (Earle and Hurley, 2015)

∑
|i−j|≤b dij(b+ 1− |i− j|)

with band width 1 ≤ b < n

Path length

Hamiltonian path length (PL) (Hubert, 1974; Caraux and Pinloche, 2005)
∑n−1

i=1 di,i+1

Table: Popular seriation criteria.

Source: Michael Hahsler. An experimental comparison of seriation methods for one-mode two-way data. European Journal of
Operational Research, 257:133–143, 2017
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Seriation Techiques

Technique Objective function

Criterion optimization methods
Integer linear programming (ILP) (Brusco, 2002) Gradient conditions
Dynamic programming (Hubert et al., 2001) Gradient conditions
Branch-and-bound (Brusco and Stahl, 2005) Gradient conditions
Genetic algorithm (Goldberg, 1989; Soltysiak and Jaskulski, 1998) Various
Simulated annealing (ARSA) (Brusco et al., 2008) Gradient measure
Spectral seriation (Atkins et al., 1999; Ding and He, 2004; Fogel et al., 2014) 2-Sum criterion
TSP solver (various) (Wilkinson, 1971) Hamiltonian path length
Quadratic assignment problem heuristic (QAP) (Hubert and Schultz, 1976; Caraux and
Pinloche, 2005; Goulermas et al., 2016)

2-Sum criterion, linear seri-
ation, inertia or BAR

Dendrogram methods
Hierarchical clustering (HC) (Eisen et al., 1998) Other (depends on linkage)
Gruvaeus and Wainer reordering (GW) (Gruvaeus and Wainer, 1972) Restricted path length
Optimal leaf ordering reordering (OLO) (Bar-Joseph et al., 2001) Restricted path length
DendSer reordering (Earle and Hurley, 2015) Various (restricted)

Other methods
Multidimensional scaling (MDS) (Kendall, 1971) Other (stress)
Rank-two ellipse seriation (R2E) (Chen, 2002) None
Sorting Points Into Neighborhoods (SPIN) (Tsafrir et al., 2005) Other (energy)
Visual Assessment of Tendency (VAT) (Bezdek and Hathaway, 2002) Other (MST)

Table: Popular seriation techniques.

Source: Michael Hahsler. An experimental comparison of seriation methods for one-mode two-way data. European Journal of
Operational Research, 257:133–143, 2017 hahsler:Hahsler2016d
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Creating Dissimilarity Plots

Γ Ψ1

Ψ2

Ψ3

Ψ4

Ψc

D Ψi(Di)Di Ψc(Dc)

1 Split D into clusters using the assignment function Γ provided by the
partitional clustering algorithm

2 Arrange objects: Use Ψ1, . . . ,Ψk to show micro-structure.

3 Arrange clusters: Ψc places more similar clusters together
(macro-structure).
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Arrange Clusters

Find Ψc based on inter-cluster dissimilarity matrix Dc which aggregates
dissimilarities between all pairs of clusters given dissimilarities between all
elements of the clusters in D.

Hierarchical clustering: dissimilarities between two sets of objects X and Y

complete-link: dc(X ,Y) = max{d(x, y) : x ∈ X , y ∈ Y}
single-link: ds(X ,Y) = min{d(x, y) : x ∈ X , y ∈ Y}

average-link: da(X ,Y) =
1

|X | · |Y|
∑
x∈X

∑
y∈Y

d(x, y)

Set theory: Hausdorff metric (Hausdorff, 2001)

dH(X ,Y) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y)}

The Hausdorff metric pairs up each element from one set with the most similar
element from the other set and then finds the largest dissimilarity in such element
pairs.
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Used Seriation Methods

We use the column/row gradient measure as the loss function for seriation.

1 Placement (seriation) of clusters: Average-link, row/column gradient
measure using branch-and-bound to find the optimal solution

2 Placement (seriation) of objects within each cluster: row/column
gradient measure uses a simulated annealing heuristic

Seriation algorithms are provides by Brusco and Stahl (2005) and are
available in the R extension package seriation (Hahsler et al., 2016).
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Easily Distinguishable Groups I

Ruspini data set (Ruspini, 1970) with 75 points in two-dimensional space
with four clearly distinguishable groups.
Euclidean distances and k-medoids clustering algorithm (partitioning
around medoids (PAM) (Kaufman and Rousseeuw, 1990)) to produce a
partition with k = 4
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0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.74

n = 75 4  clusters  Cj

j :  nj | avei∈Cj  si
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2 :   17  |  0.67

3 :   15  |  0.80

4 :   23  |  0.75
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Easily Distinguishable Groups II

Coarse seriation Dissimilarity plot
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Mis-specification of the Number of Clusters I

Coarse seriation, k = 3 Dissimilarity plot, k = 3
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Mis-specification of the Number of Clusters II

Coarse seriation, k = 7 Dissimilarity plot, k = 7
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No Structure I

Random data for 250 objects in R5: X1, X2, . . . , X5 ∼ N(0, 1)
Euclidean distance and PAM with k = 10
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These two components explain 45.85 % of the point variability.
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−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.13
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j :  nj | avei∈Cj  si

1 :   27  |  0.08

2 :   25  |  0.11

3 :   28  |  0.29

4 :   40  |  0.12

5 :   21  |  0.01
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7 :   22  |  0.15

8 :   20  |  0.11
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No Structure II

Coarse seriation Dissimilarity plot
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High-dimensional Data I

Votes data set (UCI Repository of Machine Learning Databases (Blake
and Merz, 1998)). Votes for each of the U.S. House of Representatives
congressmen on the 16 key votes during the second session of 1984.

Coding: 2 variables per vote (in favor/agains)
→ Each congressman is represented by a vector in {0, 1}32

Dissimilarity measure: Jaccard dissimilarity (Sneath and Sokal,
1973) between congressmen. Let Si and Sj be the sets of votes two
congressmen cast. Then the Jaccard dissimilarity

dij = 1− Si ∩ Sj
Si ∪ Sj

.

Cluster algorithm: PAM with k = 12
(the first bump of average silhouette for k = 2, 3, . . . , 30)
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High-dimensional Data II
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j :  nj | avei∈Cj  si
1 :   35  |  0.34

2 :   48  |  0.15

3 :   45  |  −0.01

4 :   36  |  0.08

5 :   38  |  0.05

6 :   32  |  0.08

7 :   43  |  0.22

8 :   37  |  0.27

9 :   18  |  0.09

10 :   52  |  0.07

11 :   20  |  0.33
12 :   31  |  0.05
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High-dimensional Data III

Coarse seriation, threshold=0.7 Dissimilarity plot, threshold=0.7
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High-dimensional Data IV
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Conclusion

Advantages of dissimilarity plots

Scales well with dimensionality of data (visualizes dissimilarities)

Shows cluster quality (block structure)

Visual analysis of cluster structure (placement of clusters)

Visual analysis of micro-structure (placement of objects)

Makes misspecification of number of clusters apparent (placement of
clusters/objects)

Enhancements for large number of objects/clusters

Object sampling: Reduces the size of the dissimilarity matrix, however,
details are sacrificed.

Image downsampling: pixel skipping, pixel averaging, 2D discrete wavelet
transformation

Interactive plot: Plot with only average between-cluster similarities and
then separate plot for each cluster (inter-cluster structures).
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Further Reading and Code

Further Reading
Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in order: An
introduction to the R package seriation. Journal of Statistical Software, 25(3):1–34,
March 2008

Michael Hahsler and Kurt Hornik. Dissimilarity plots: A visual exploration tool for
partitional clustering. Journal of Computational and Graphical Statistics, 10(2):
335–354, 2011. (Selected for Best of JCGS session 2011)

Michael Hahsler. An experimental comparison of seriation methods for one-mode
two-way data. European Journal of Operational Research, 257:133–143, 2017.

Code
Dissimilarity plot and seriation methods are implemented in the R extension
package seriation (Hahsler et al., 2016) and are freely available via the
Comprehensive R Archive Network at

https://CRAN.R-project.org/package=seriation.
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