

Electronic Health Record Analytics: The Case of Optimal Diabetes Screening

Michael Hahsler1, Farzad Kamalzadeh¹ Vishal Ahuja ${ }^{1}$, and Michael Bowen²
${ }^{1}$ Southern Methodist University
${ }^{2}$ UT Southwestern Medical Center and Parkland Health and Hospital System

April 13, 2018
Artificial Intelligence in Medicine Seminar Series Division of Medical Physics and Engineering UT Southwestern

World Changers Shaped Here

THE STAGGERING COSTS OF DIABETES IN AMERICA

http://main.diabetes.org/dorg/images/infographics/adv-cost-of-diabetes.pdf;
American Diabetes Diabetes Care 2013; 36:1033-1046.

Prevalence of Diagnosed and Undiagnosed Type 2 Diabetes and Prediabetes
 29.1 million people in the US have T2DM (9.3\% of population)

8.1 Million Undiagnosed

Over 86 million adults in the US with pre-diabetes (37% of population)

77 Million with Undiagnosed Pre-diabetes

Nature of Chronic Diseases

Existing Guidelines and Risk Scores

1. Screening Guidelines

- U.S. Preventive Services Task Force (USPSTF) 2015
- Adults 40-70 AND BMI 225
- American Diabetes Association (ADA)
- All adults over age 45 OR any age if $\mathrm{BMI} \geq 25$ (or ≥ 23 in Asians) AND an additional risk factor

2. Diabetes Risk Score (not widely used in the US)

- Incident Risk Scores: predict development of diabetes in the future
- Prevalent Risk Scores: assess the current probability of having undiagnosed diabetes

Data Set

- Retrospective cohort (N = 34,297 patients)
- Cohort Dates: 2012-2015
- Setting: Parkland Health and Hospital System, a large integrated, safety-net healthcare system in North Texas.
- Data Source: Epic Electronic Medical Record (EHR)
- Eligibility:
- Ages 18-65
- Established patients (≥ 1 primary care visit every 18 month)
- Only unscreened patients with no known diabetes during first 12 month

Available Data

105 Features extracted including

- Demographic information: Age, Gender, Race, etc.
- BMI, vitals: Blood pressure, etc.

Risk factors (co-morbidities): Hypertension, family history, etc.
Lab values: Cholesterol, random blood glucose, etc.
Medications (prescribed): Blood pressure, cholesterol, etc.

- Health care utilization: Office encounters, ER visits, etc.

Screening results: Hemoglobin A1C

Only demographic information, BMI and vitals are widely available. $>20 \%$ of the data values are missing overall. $>50 \%$ of lab values missing.

Cohort Specifics

Race

Payment

Median age: 46.9 years

Questions of interest

 do the initial screening?

- Optimal screening decision under constraints
- Constraints on resources and patient availability. Screening almost everyone (e.g., follow ADA Guidelines) is not feasible.
- Individualize the decision for each patient
- Focus on catching the disease at earlier stages (such as pre-diabetes)

Framework

A simple Markov Model for Diabetes Progression

States with transitions

A simple Hidden Markov Model (HMM) for Diabetes Progression

Hidden States with transitions

Observations
High A1C

Transition Parameter Estimation

Baum-Welch algorithm
 $\lambda=(A, B, \pi)$

for each sequence

while desired level of convergence not acquired
for $t=1$ to T
for in S
$\alpha_{i}(t)=P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{t}=y_{t} \mid X_{t}=i, \lambda\right)$
the probability of seeing the $Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{t}=y_{t}$ and being in state i at time t
$\beta_{i}(t)=P\left(Y_{t+1}=y_{t+1}, Y_{t+2}=y_{t+2}, \ldots, Y_{T}=y_{T} \mid X_{t}=i, \lambda\right)$
the probability of the ending partial sequence $Y_{t+1}=y_{t+1}, Y_{t+2}=y_{t+2}, \ldots, Y_{T}=y_{T}$ given starting state i at time t
$\gamma_{i}(t)=P\left(X_{t}=i \mid Y, \lambda\right)=\frac{\alpha_{i}(t) \cdot \beta_{i}(t)}{\sum_{j=1}^{N} \alpha_{j}(t) \cdot \beta_{j}(t)}$
the probability of being in state i at time t given the observed sequence Y and the parameters λ
$\delta_{i j}(t)=P\left(X_{t}=i, X_{t+1}=j \mid Y, \lambda\right)=\frac{\alpha_{i}(t) a_{i j} \cdot \beta_{i}(t+1) b_{j}\left(y_{t+1}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i}(t) a_{i j} \cdot \beta_{i}(t+1) b_{j}\left(y_{t+1}\right)}$
the probability of being in state i and j at times t and $t+1$ respectively given the observed sequence Y and parameters λ

$$
\text { update: } \quad \pi_{i}=\gamma_{i}(1) \quad a_{i j}=\frac{\sum_{t=1}^{T-1} \delta_{i j}(t)}{\sum_{t=1}^{T-1} \gamma_{i}(t)} \quad b_{i}\left(v_{k}\right)=\frac{\sum_{t=1}^{T} 1_{y_{t}=v_{k}} \gamma_{i}(t)}{\sum_{t=1}^{T} \gamma_{i}(t)}
$$

Result of Baum-Welch algorithm

Framework

POMDP for Diabetes

- A Markov decision process (MDP) adds the following elements to a Markov model:

1. Actions which affect transition between states.
2. Rewards for actions in different states.

- The goal is to find an optimal policy. I.e., what action to take in each state to maximize the expected reward.
- Partially observable MDP (POMDP): States are not directly observable like in HMMs. POMDP keeps track of belief states.

POMDP

Belief States and Policy

- Belief states represent our "belief" about in what state the patient currently is.
- Observations change the belief state.
- Belief states have associated actions that maximize the expected reward.

Framework

Observations via Predictive Modeling

- POMDP needs observations, but health status cannot be directly observed unless we screen!
- Idea: Use other clinical observations recorded in EHRs as a proxy and learn the relationship to the A1C using predictive modeling.
- Our key questions are:
- How to produce simple predictive models to guide screening using only already available data?
- How do we deal with a large quantity of missing data?
- Desired properties:
- Applicable to all patients, no matter how much information we have.
- Can guide us to what missing patient information would be most valuable.

Related Literature

Collins et al. (2011): Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting.

- Surveys 39 studies with 43 risk prediction models
- Models use 4-64 predictors (most common: age, family history, BMI, hypertension, fasting glucose)
- Most common modeling method: Logistic regression
- Missing data: Almost all (50\%) remove incomplete cases or do not mention missing data. One study uses imputation.

Predictive Problem: Initial Screening Decision

Single-Factor Threshold Models Usual risk factors: Age and BMI

Age

1- False Alarm Rate Available for 87-100\% of patients

Single-Factor Threshold Models Usual risk factors: Age and BMI

Age

Single-Factor Threshold Models Usual risk factors: Age and BMI

Age
MI

1- False Alarm Rate

Single-Factor Threshold Models Usual risk factors: Age and BMI

(Age>40, BMI>25)

Single-Factor Threshold Models Uncommon risk factor: Random Blood Glucose

RBG (mean)

Available for 64\% of patients

RBG (std. dev.)

Available for 15\% of patients

Drawbacks for Single-Factor Models

- Ignores important available information.
-What if exactly the needed factor is not available (e.g., no blood test)?

Multi-Factor Models

-For multi-factor models we have to deal with

- Large number of features, but for practical decisions a small number of predictors is preferred.
- Large part of the data is missing.
- We consider here two models
- Naïve Bayes Classifier with feature selection
- Logistic regression with LASSO regularization
- Both models apply feature selection, but dealing with missing data needs more consideration.
- We will use a 20% holdout sample for testing.

Dealing With Missing Values

- Different types of missingness:

- Missing completely at random (MCAR): missingness is unrelated to any study variable.
- Missing at random (MAR): non-randomness of missingness can be explained by other variables, but is not related to the response variable. E.g., patient does not undergo a test because of financial considerations.
- Missing not at random(MNAR): missingness is related to the response variable value. E.g., overweighed patient does not perform testfor fear of a bad test result.
- Need methods robust to missingness (do not introduce bias). Options:
a. Ignore feature with missing values
b. Ignore observations with missing values
c. Pairwise deletion (ignore just the missing values) - needs to be supported by the method
d. Imputation (e.g., mean imputation)
e. Imputation + indicator for missingness

Enders, Craig K. (2010). Applied Missing Data Analysis (1st ed.)

Naïve Bayes Classifier

- Applies Bayes' theorem with a (naive) assumption of independence between features.

$$
p\left(C_{k} \mid x\right)=\frac{p\left(C_{k}\right) \prod_{i=1}^{n} p\left(x_{i} \mid C_{k}\right)}{p(x)}
$$

- C_{k} is the class, x is a feature vector. We use a threshold on $p\left(C_{\text {diabetes }} \mid x\right)$ to produce a biased classifier.
- Metric predictors: we assume Gaussian distributions (given the target class).
- Missing values:
- Method supports pairwise deletion: leave out missing values for the computation of the probability factors and omit components for prediction.
- Implies MCAR!
- Missing indicator can potentially preserve information for MNAR.

Multi Factor Model NB Forward Feature Selection

2 of top 10 predictors are not in current guidelines

Forward Feature Selection

Available for 100\% of patients

Feature
 AUC

1 BMI 64.74\%

2 LAB_RANDOM_GLUCOSE_MEAN 69.72\%

3 BP_SYSTOLIC 71.27\%
4 LAB_HIGH_DENSITY_CHOL 72.19\%
5 AGE 72.75\%
6 LAB_ALANINE_AMINOTRANSFERASE 73.23\%
7 MED_CHOL 73.56\%
8 MED_DM 73.81\%
9 PULSE 74.08%
10 PATIENT_RACE_White 74.26\%

- Mean imputation hurts the results.
- Missing indicators improves the results from 0.758 to 0.762 .

Generalized Linear Model with LASSO

- GLM for binomial response with L1 regularization.

$$
\min _{\boldsymbol{\beta}}\left\{\frac{1}{N} \sum_{i=1}^{N} \operatorname{Cost}\left(h_{\boldsymbol{\beta}}\left(\boldsymbol{x}_{\boldsymbol{i}}\right), y_{i}\right)\right\} \quad \text { s.t. }\|\boldsymbol{\beta}\|_{1} \leq t
$$

- All variables are scaled to Z-scores.

Missing values:

- Method needs imputation.
- Numeric values: Mean imputation and add a dummy indicator variable.
- Nominal variables: add an additional value for missing data.

Logistic Regression with LASSO

Most important of top 10 predictors is not in current guidelines

First 10 features

| | Feature | OR |
| :--- | :--- | :--- | AUC

Logistic Regression - LASSO

LASSO/Binom. - Best Lambda

Cross Validated lambda selection chooses 41 features.

Missing data

- Imputation is necessary
- Missing indicator improves the results from 0.765 to .772
- Important missing indicators have to do with missing lab values. E.g.,
- missing platelet count
- missing HDL values

Available for 100% of patients

Comparison of Predictive Models

	AUC	Availability
LASSO (best)	77%	100%
NB (select feat.)	76%	100%
NB (10)	74%	100%
LASSO (10)	73%	100%
RGB (avg)	76%	64%
BMI	67%	87%
RGB (std. dev.)	65%	15%
BP	63%	99%
HDL Ratio	61%	50%
Age	58%	100%

Framework

Simple Markov Model for Diabetes Progression

Solution of the POMDP: Optimal Screening Strategy

Limitations and Future Steps

- HMM: Estimation of transition probabilities may be biased because it is based on actually screened patients.
- Predictive Model: Missing data!
- POMDP
- Cost/reward structure in POMDP (e.g., cost does not increase linearly)
- Other dimensions for the state space? Makes the model harder to solve due to an explosion of belief states.
- Set of possible/available actions (e.g., other interventions including diet and exercise changes).
- Rescreening: Reset the belief state after negative screening.

