

Electronic Health Record Analytics: The Case of Optimal Diabetes Screening

Michael Hahsler1, Farzad Kamalzadeh¹ Vishal Ahuja¹, and Michael Bowen²

¹ Southern Methodist University

² UT Southwestern Medical Center and Parkland Health and Hospital System

April 13, 2018 Artificial Intelligence in Medicine Seminar Series Division of Medical Physics and Engineering UT Southwestern

World Changers Shaped Here

THE STAGGERING COSTS OF DIABETES IN AMERICA

http://main.diabetes.org/dorg/images/infographics/adv-cost-of-diabetes.pdf; *Diabetes Care* 2013; 36:1033-1046.

Prevalence of Diagnosed and Undiagnosed Type 2 Diabetes and Prediabetes 29.1 million people in the US have T2DM (9.3% of population)

Over 86 million adults in the US with pre-diabetes (37% of population)

8.1 Million Undiagnosed

CDC National Diabetes Statistics Report, 2014.

Nature of Chronic Diseases

Disease severity

Existing Guidelines and Risk Scores

1. Screening Guidelines

- U.S. Preventive Services Task Force (USPSTF) 2015
 - Adults 40-70 <u>AND</u> BMI≥25
- American Diabetes Association (ADA)
 - All adults over age 45 <u>OR</u> any age if BMI ≥ 25 (or ≥ 23 in Asians) <u>AND</u> an additional risk factor
- 2. Diabetes Risk Score (not widely used in the US)
 - Incident Risk Scores: predict development of diabetes in the future
 - Prevalent Risk Scores: assess the current probability of having undiagnosed diabetes

Data Set

- **Retrospective cohort** (N = 34,297 patients)
- Cohort Dates: 2012-2015
- **Setting:** Parkland Health and Hospital System, a large integrated, safety-net healthcare system in North Texas.
- Data Source: Epic Electronic Medical Record (EHR)
- Eligibility:
 - Ages 18-65
 - Established patients (≥1 primary care visit every 18 month)
 - Only unscreened patients with no known diabetes during first 12 month

Available Data

105 Features extracted including

- Demographic information: Age, Gender, Race, etc.
- BMI, vitals: Blood pressure, etc.
- Risk factors (co-morbidities): Hypertension, family history, etc.
- Lab values: Cholesterol, random blood glucose, etc.
- Medications (prescribed): Blood pressure, cholesterol, etc.
- Health care utilization: Office encounters, ER visits, etc.
- Screening results: Hemoglobin A1C

Only demographic information, BMI and vitals are widely available. >20% of the data values are missing overall. >50% of lab values missing.

Cohort Specifics

Median age: 46.9 years

Questions of interest

Optimal screening decision under constraints

- Constraints on resources and patient availability. Screening almost everyone (e.g., follow ADA Guidelines) is not feasible.
- Individualize the decision for each patient
- Focus on catching the disease at earlier stages (such as pre-diabetes)

Framework

States with transitions

нмм

Transition Parameter Estimation

$A \rightarrow B \rightarrow B \rightarrow C \rightarrow D \rightarrow C \rightarrow C \rightarrow C \rightarrow D \rightarrow E$											
		-	-		-• D	-		•	-	→ E	
	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10	
Patient 1	А				D		С			Е	
Patient 2	С		D	D		Е					
Patient 3	Α					В	Α		Α		
Patient 4		В		С						С	
Patient 5	С		С					E			
Patient 6		D					D			E	
Patient 7			В			С			В		

нмм

Baum–Welch algorithm $\lambda = (A, B, \pi)$

. .

for each sequence

while desired level of convergence not acquired

for t= 1 to T

for i in S

$$x_i(t) = P(Y_1 = y_1, Y_2 = y_2, \dots, Y_t = y_t | X_t = i, \lambda)$$

the probability of seeing the $Y_1 = y_1, Y_2 = y_2, ..., Y_t = y_t$ and being in state *i* at time *t*

$$\beta_i(t) = P(Y_{t+1} = y_{t+1}, Y_{t+2} = y_{t+2}, \dots, Y_T = y_T | X_t = i, \lambda)$$

the probability of the ending partial sequence $Y_{t+1} = y_{t+1}, Y_{t+2} = y_{t+2}, \dots, Y_T = y_T$ given starting state *i* at time *t*

$$\gamma_i(t) = P(X_t = i | Y, \lambda) = \frac{\alpha_i(t) \cdot \beta_i(t)}{\sum_{j=1}^N \alpha_j(t) \cdot \beta_j(t)}$$

the probability of being in state i at time t given the observed sequence Y and the parameters λ

$$\delta_{ij}(t) = P(X_t = i, X_{t+1} = j | Y, \lambda) = \frac{\alpha_i(t) a_{ij} \cdot \beta_i(t+1) b_j(y_{t+1})}{\sum_{i=1}^N \sum_{j=1}^N \alpha_i(t) a_{ij} \cdot \beta_i(t+1) b_j(y_{t+1})}$$

the probability of being in state i and j at times t and t+1 respectively given the observed sequence Y and parameters λ

update:
$$\pi_i = \gamma_i(1)$$
 $a_{ij} = \frac{\sum_{t=1}^{T-1} \delta_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)}$ $b_i(\nu_k) = \frac{\sum_{t=1}^{T} 1_{y_t = \nu_k} \gamma_i(t)}{\sum_{t=1}^{T} \gamma_i(t)}$

Result of Baum–Welch algorithm

нмм

Framework

POMDP for Diabetes

 A Markov decision process (MDP) adds the following elements to a Markov model:

- 1. Actions which affect transition between states.
- 2. Rewards for actions in different states.
- The goal is to find an **optimal policy.** I.e., what action to take in each state to maximize the expected reward.
- Partially observable MDP (POMDP): States are not directly observable like in HMMs. POMDP keeps track of belief states.

POMDP

Belief States and Policy

- Belief states represent our "belief" about in what state the patient currently is.
- Observations change the belief state.
- Belief states have associated actions that maximize the expected reward.

POMDP

Framework

Observations via Predictive Modeling

- POMDP needs observations, but health status cannot be directly observed unless we screen!
- Idea: Use other clinical observations recorded in EHRs as a proxy and learn the relationship to the A1C using predictive modeling.
- Our key questions are:
 - How to produce simple predictive models to guide screening using only already available data?
 - How do we deal with a large quantity of missing data?
- Desired properties:
 - Applicable to all patients, no matter how much information we have.
 - Can guide us to what missing patient information would be most valuable.

Related Literature

Collins et al. (2011): Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting.

- Surveys **39 studies** with 43 risk prediction models
- Models use 4-64 predictors (most common: age, family history, BMI, hypertension, fasting glucose)
- Most common modeling method: Logistic regression

• Missing data: Almost all (50%) **remove incomplete cases** or do not mention missing data. One study uses imputation.

Available for 87-100% of patients

РМ

PM

1- False Alarm Rate

РМ

= USPSTF 2015 (Age>40, BMI>25) Sensitivity : 0.817 Specificity : 0.377

Single-Factor Threshold Models Uncommon risk factor: Random Blood Glucose

Available for 64% of patients

Available for 15% of patients

РМ

RBG was suggested in Bowen et al. J Clin Endocrinol Metab 2015;100(4):1503-1510

Drawbacks for Single-Factor Models

Ignores important available information.

• What if exactly the needed factor is not available (e.g., no blood test)?

PM

Multi-Factor Models

For multi-factor models we have to deal with

- Large number of features, but for practical decisions a small number of predictors is preferred.
- Large part of the data is missing.

• We consider here two models

- Naïve Bayes Classifier with feature selection
- Logistic regression with LASSO regularization

 Both models apply feature selection, but dealing with missing data needs more consideration.

• We will use a 20% holdout sample for testing.

Dealing With Missing Values

Different types of missingness:

- Missing completely at random (MCAR): missingness is unrelated to any study variable.
- Missing at random (MAR): non-randomness of missingness can be explained by other variables, but is not related to the response variable. E.g., patient does not undergo a test because of financial considerations.
- Missing not at random (MNAR): missingness is related to the response variable value. E.g., overweighed patient does not perform test for fear of a bad test result.

• Need methods robust to missingness (do not introduce bias). Options:

- a. Ignore feature with missing values
- b. Ignore observations with missing values
- c. Pairwise deletion (ignore just the missing values) needs to be supported by the method
- d. Imputation (e.g., mean imputation)
- e. Imputation + indicator for missingness

Enders, Craig K. (2010). Applied Missing Data Analysis (1st ed.)

Not practical for the data set. No data left.

Naïve Bayes Classifier

• Applies Bayes' theorem with a (naive) assumption of independence between features.

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \prod_{i=1}^n p(x_i \mid C_k)}{p(\mathbf{x})}$$

• C_k is the class, x is a feature vector. We use a threshold on $p(C_{diabetes}|x)$ to produce a biased classifier.

- Metric predictors: we assume Gaussian distributions (given the target class).
- Missing values:
 - Method supports pairwise deletion: leave out missing values for the computation of the probability factors and omit components for prediction.
 - Implies MCAR!
 - Missing indicator can potentially preserve information for MNAR.

Russell, Intelligence: A Modern Approach

Multi Factor Model NB – Forward Feature Selection

2 of top 10 predictors are not in current guidelines

РМ

Available for 100% of patients

Forward Feature Selection

	Feature	AUC
1	BMI	64.74%
2	LAB_RANDOM_GLUCOSE_MEAN	69.72%
3	BP_SYSTOLIC	71.27%
4	LAB_HIGH_DENSITY_CHOL	72.19%
5	AGE	72.75%
6	LAB_ALANINE_AMINOTRANSFERASE	73.23%
7	MED_CHOL	73.56%
8	MED_DM	73.81%
9	PULSE	74.08%
10	PATIENT_RACE_White	74.26%

- Mean imputation hurts the results.
- Missing indicators improves the results from 0.758 to 0.762.

Generalized Linear Model with LASSO

• GLM for binomial response with L1 regularization.

$$\min_{\beta} \left\{ \frac{1}{N} \sum_{i=1}^{N} Cost(h_{\beta}(\boldsymbol{x}_{i}), y_{i}) \right\}$$

 $s.t.\|\boldsymbol{\beta}\|_1 \le t$

All variables are scaled to Z-scores.

Missing values:

- Method needs imputation.
- Numeric values: Mean imputation and add a dummy indicator variable.
- Nominal variables: add an additional value for missing data.

Logistic Regression with LASSO

Most important of top 10 predictors is not in current guidelines

PM

First 10 features

	Feature	OR	AUC
1	LAB_RANDOM_GLUCOSE_MEAN	1.67	65.53%
2	BMI	1.40	68.50%
3	BP_SYSTOLIC	1.14	71.17%
4	COMORB_HYPERTENSION	1.04	72.10%
5	COMORB_FAMILY_HIST	1.19	72.10%
6	LAB_HIGH_DENSITY_CHOL.	0.85	72.60%
7	AGE	1.19	72.87%
8	MED_BP	1.06	72.87%
9	MED_CHOL.	1.09	73.15%
10	LAB_CHOLESTEROL_HDL_RATIO	1.02	73.42%

Logistic Regression - LASSO

Cross Validated lambda selection chooses 41 features.

Missing data

- Imputation is necessary
- Missing indicator improves the results from 0.765 to .772
- Important missing indicators have to do with missing lab values. E.g.,
 - missing platelet count
 - missing HDL values

Available for 100% of patients

Framework

Simple Markov Model for Diabetes Progression

POMDP

Solution of the POMDP: Optimal Screening Strategy

POMDP

Limitations and Future Steps

- HMM: Estimation of transition probabilities may be biased because it is based on actually screened patients.
- Predictive Model: Missing data!

• POMDP

- Cost/reward structure in POMDP (e.g., cost does not increase linearly)
- Other dimensions for the state space? Makes the model harder to solve due to an explosion of belief states.
- Set of possible/available actions (e.g., other interventions including diet and exercise changes).
- Rescreening: Reset the belief state after negative screening.

