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The traveling salesperson problem

The traveling salesperson problem (TSP; Lawler, Lenstra, Rinnooy Kan, and
Shmoys, 1985; Gutin and Punnen, 2002) is a well known and important
combinatorial optimization problem.

The goal is to find the shortest tour that visits each city in a given list
exactly once and then returns to the starting city.

The TSP has many applications including (Lenstra and Kan, 1975)

� computer wiring

� vehicle routing

� clustering of data arrays

� machine scheduling
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Definition
Formally, the TSP can be stated as: The distances between n cities are stored
in a distance matrix D with elements d(i, j) where i, j = 1 . . . n and the
diagonal elements d(i, i) = 0.

A tour can be represented by a cyclic permutation π of {1, 2, . . . , n} where
π(i) represents the city that follows city i on the tour. The traveling
salesperson problem is then to find a permutation π that minimizes

n∑
i=1

d(i, π(i)), (1)

which is called the length of the tour.

In terms of graph theory, cities can be regarded as vertices in a complete,
weighted graph. The edge weights represent the distances between the cities.
The goal is to find a Hamiltonian cycle with the least weight (Hoffman and
Wolfe, 1985).
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Alternative representations

� Linear programming representation – complete linear inequality
structure unknown

� Integer programming formulation – assignment problem + subtour
elimination constraints⇒ use LP as a relaxation

� Binary quadratic programming formulation – TSP is equivalent to a 0-1
quadratic programming problem
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Some types of TSPs

Symmetric TSP with a symmetric distance matrix: d(i, j) = d(j, i)

Asymmetric TSP – the distances are not equal for all pairs of cities. Arises
when instead of spatial distances cost or time is used to form D.

Euclidean TSP with euclidean distances.

TSP with triangle inequality where d(i, j) + d(j, k) ≥ d(i, k).
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Some algorithms and heuristics

Algorithms for exact solution

� Dynamic programming for small instances (Held and Karp, 1962).

� Branch-and bound, branch-and-cut,. . .

Heuristics

1. Tour construction

(a) Choose initial tour (e.g., random city, convex hull for Euclidean TSP)

(b) Selection method (nearest, farthest, arbitrary,. . . )

(c) Insertion method (minimum cost, greatest angle)

or solve assignment problem w/linear programming + patching

2. Tour improvement

� Edge exchange procedures: 2-opt (Croes, 1958), 3-opt (Lin, 1965),
k-opt, Or-opt

� Variable r-opt (Lin and Kernighan, 1973)
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The TSP package
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Overview

TSP/ATSP TOUR

dist matrix

TSPLIB
file

write_TSPLIB()

as.dist()
TSP()/ATSP()

as.TSP()/as.ATSP()

integer (vector)

as.integer()
cut_tour()

TSP()
as.TSP()

as.matrix()

solve_TSP()

TOUR()
as.TOUR()

read_TSPLIB()

Methods for TSP/ATSP: print(), n_of_cities(), labels(), image().
Methods for TOUR: print(), labels(), cut_tour(), tour_length().
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Solving (A)TSPs

Common interface:

solve_TSP(x, method, control)

where

� x is the TSP to be solved,

� method is a character string indicating the method used to solve the TSP,
and

� control can contain a list with additional information used by the solver.
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Currently available algorithms

The NP-completeness of the TSP makes it already for medium sized TSP
instances necessary to resort to heuristics. In TSP, we implemented some
simple heuristics described by Rosenkrantz, Stearns, and Philip M. Lewis
(1977):

� Nearest neighbor algorithm

� Some variants of the insertion algorithm

The package also provides an interface to the Concorde TSP
solver (Applegate, Bixby, Chvátal, and Cook, 2000).
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Nearest neighbor algorithm

The nearest neighbor algorithm (Rosenkrantz et al., 1977) follows a very simple
greedy procedure: The algorithm starts with a tour containing a randomly
chosen city. Then the algorithm always adds to the last city in the tour the
nearest not yet visited city. The algorithm stops when all cities are on the tour.
This algorithm is implemented as method "nn" for solve_TSP().

An extension to this algorithm is to repeat it with each city as the starting point
and then return the best of the found tours. This algorithm is implemented as
method "repetitive_nn".
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Insertion algorithms
All insertion algorithms (Rosenkrantz et al., 1977) start with a tour consisting of an arbitrary city
and then choose in each step a city k not yet on the tour. This city is inserted into the existing
tour between two consecutive cities i and j, such that

d(i, k) + d(k, j)− d(i, j)

is minimized. The algorithms stops when all cities are on the tour. The insertion algorithms differ
in the way the city to be inserted next is chosen:

Nearest insertion The city k is chosen in each step as the city which is nearest to a city on the
tour.

Farthest insertion The city k is chosen in each step as the city which is farthest to any of the
cities on the tour.

Cheapest insertion The city k is chosen in each step such that the cost of inserting the new
city (i.e., the increase in the tour’s length) is minimal.

Arbitrary insertion The city k is chosen randomly from all cities not yet on the tour.

Methods: "nearest_insertion", "farthest_insertion", "cheapest_insertion",
"arbitrary_insertion"
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Some properties of the insertion

algorithms
The nearest and cheapest insertion algorithms are variants of to the minimum
spanning tree algorithm which is known to be a good algorithm to find a
Hamiltonian cycle in a connected, undirected graph with a close to minimal
weight sum. For nearest and cheapest insertion, adding a city to a partial tour
corresponds to adding an edge to a partial spanning tree. For TSPs with
distances obeying the triangular inequality , the upper bound for the length of
the tour found by the minimum spanning tree algorithm is twice the optimal
tour length.

The idea behind the farthest insertion algorithm is to link cities far outside into
the tour fist to establish an outline of the whole tour early. With this change, the
algorithm cannot be directly related to generating a minimum spanning tree and
thus the upper bound stated above cannot be guaranteed. However, it can was
shown that the algorithm generates tours which approach 1.5 times the
optimal tour length (Johnson and Papadimitriou, 1985).
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Concorde

Concorde (Applegate et al., 2000; Applegate, Bixby, Chvatal, and Cook, 2006)
is currently one of the best implementations for solving symmetric TSPs based
on the branch-and-cut method.

In May 2004, Concorde was used to find the optimal solution for the TSP of
visiting all 24,978 cities in Sweden. The computation was carried out on a
cluster with 96 nodes and took in total almost 100 CPU years (assuming a
single CPU Xeon 2.8 GHz processor).

TSP provides a simple interface to Concorde which is used for method
"concorde". It saves the TSP using write_TSPLIB() and then calls the
Concorde executable and reads back the resulting tour.
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Examples
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Comparing some heuristics
USCA50 contains 50 cities in the USA and Canada as a TSP.

> library("TSP")

> data("USCA50")

> tsp <- USCA50

> tsp

object of class 'TSP'

50 cities (distance 'euclidean')

Calculate tours:

> methods <- c("nearest_insertion", "farthest_insertion",

+ "cheapest_insertion", "arbitrary_insertion", "nn",

+ "repetitive_nn")

> tours <- lapply(methods, FUN = function(m) solve_TSP(tsp,

+ method = m))

> names(tours) <- methods

> tours[[1]]

object of class 'TOUR'

result of method 'nearest_insertion' for 50 cities

tour length: 17413
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Comparing some heuristics (cont.)
> opt <- 14497

> dotchart(c(sapply(tours, FUN = attr, "tour_length"),

+ optimal = opt), xlab = "tour length", xlim = c(0,

+ 25000))
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Hamiltonian paths
The problem of finding the shortest Hamiltonian path through a graph can be transformed into
the TSP with cities and distances representing the graphs vertices and edge weights,
respectively (Garfinkel, 1985).

Finding the shortest Hamiltonian path through all cities disregarding the endpoints can be
achieved by inserting a dummy city which has a distance of zero to all other cities.

> library("TSP")

> data("USCA312")

> tsp <- insert_dummy(USCA312, label = "cut")

> tour <- solve_TSP(tsp, method = "nearest_insertion")

> tour

object of class 'TOUR'

result of method 'nearest_insertion' for 313 cities

tour length: 38539

The path length is the tour length. The optimal length is 34928 (using Concorde).
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Hamiltonian paths (cont.)

> path <- cut_tour(tour, "cut")

> head(labels(path))

[1] "Alert, NT" "Yellowknife, NT" "Dawson, YT"

[4] "Fairbanks, AK" "Nome, AK" "Anchorage, AK"

> tail(labels(path))

[1] "Eugene, OR" "Salem, OR" "Portland, OR" "Hilo, HI"

[5] "Honolulu, HI" "Lihue, HI"
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Hamiltonian paths (cont.)

Visualizing the path using maps et al.

> library("maps")

> library("sp")

> library("maptools")

> data("USCA312_map")

> plot_path <- function(path) {

+ plot(as(USCA312_coords, "Spatial"), axes = TRUE)

+ plot(USCA312_basemap, add = TRUE, col = "gray")

+ points(USCA312_coords, pch = 3, cex = 0.4, col = "red")

+ path_line <- SpatialLines(list(Lines(list(Line(USCA312_coords[path,

+ ])))))

+ plot(path_line, add = TRUE, col = "black")

+ points(USCA312_coords[c(head(path, 1), tail(path,

+ 1)), ], pch = 19, col = "black")

+ }
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> plot_path(path)
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> plot_path(cut_tour(solve_TSP(tsp, method = "concorde"),

+ "cut"))
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Hamiltonian paths (cont.)
Related Problem: Hamiltonian path starting with a given city (e.g., New York).
Solution: All distances to the selected city are set to zero⇒ asymmetric TSP

> atsp <- as.ATSP(USCA312)

> ny <- which(labels(USCA312) == "New York, NY")

> atsp[, ny] <- 0

> tour <- solve_TSP(atsp, method = "nearest_insertion")

> tour

object of class 'TOUR'

result of method 'nearest_insertion' for 312 cities

tour length: 41654

> path <- cut_tour(tour, ny, exclude_cut = FALSE)

> head(labels(path))

[1] "New York, NY" "Jersey City, NJ" "Newark, NJ"

[4] "Elizabeth, NJ" "Paterson, NJ" "White Plains, NY"

> tail(labels(path))

[1] "Anchorage, AK" "Nome, AK" "Fairbanks, AK"

[4] "Dawson, YT" "Yellowknife, NT" "Alert, NT"
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> plot_path(path)
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Hamiltonian paths (cont.)

Related Problem: Hamiltonian path with both end points given.
Solution: This problem can be transformed to a TSP by replacing the two cities by a single city
which contains the distances from the start point in the columns and the distances to the end
point in the rows.

> m <- as.matrix(USCA312)

> ny <- which(labels(USCA312) == "New York, NY")

> la <- which(labels(USCA312) == "Los Angeles, CA")

> atsp <- ATSP(m[-c(ny, la), -c(ny, la)])

> atsp <- insert_dummy(atsp, label = "LA/NY")

> la_ny <- which(labels(atsp) == "LA/NY")

> atsp[la_ny, ] <- c(m[-c(ny, la), ny], 0)

> atsp[, la_ny] <- c(m[la, -c(ny, la)], 0)

> tour <- solve_TSP(atsp, method = "nearest_insertion")

> tour
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object of class 'TOUR'

result of method 'nearest_insertion' for 311 cities

tour length: 45094

> path_labels <- c("New York, NY", labels(cut_tour(tour,

+ la_ny)), "Los Angeles, CA")

> path_ids <- match(path_labels, labels(USCA312))

> head(path_labels)

[1] "New York, NY" "Central Islip, NY" "Albany, NY"

[4] "Schenectady, NY" "Troy, NY" "Pittsfield, MA"

> tail(path_labels)

[1] "Stockton, CA" "Lihue, HI" "Honolulu, HI"

[4] "Hilo, HI" "Santa Barbara, CA" "Los Angeles, CA"

Michael Hahsler and Kurt Hornik 28 Vienna, December 1, 2006



> plot_path(path_ids)
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Rearrangement clustering

Climer and Zhang (2006) introduce rearrangement clustering by arranging all objects in a linear
order using a TSP. The authors suggest to find the cluster boundaries of k clusters by adding k
dummy cities which have constant distance c to all other cities and are infinitely far from each
other.

> data("iris")

> tsp <- TSP(dist(iris[-5]), labels = iris[, "Species"])

> tsp_dummy <- insert_dummy(tsp, n = 2, label = "boundary")

> tour <- solve_TSP(tsp_dummy)

Next, we plot the TSP’s permuted distance matrix using shading to represent distances.

> image(tsp_dummy, tour)

> abline(h = which(labels(tour) == "boundary"), col = "red")

> abline(v = which(labels(tour) == "boundary"), col = "red")
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> labels(tour)

[1] "virginica" "virginica" "virginica" "versicolor" "versicolor"
[6] "versicolor" "virginica" "virginica" "versicolor" "versicolor"
[11] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[16] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[21] "virginica" "versicolor" "virginica" "virginica" "virginica"
[26] "virginica" "versicolor" "versicolor" "versicolor" "versicolor"
[31] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[36] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[41] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[46] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[51] "versicolor" "virginica" "versicolor" "versicolor" "versicolor"
[56] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[61] "boundary" "setosa" "setosa" "setosa" "setosa"
[66] "setosa" "setosa" "setosa" "setosa" "setosa"
[71] "setosa" "setosa" "setosa" "setosa" "setosa"
[76] "setosa" "setosa" "setosa" "setosa" "setosa"
[81] "setosa" "setosa" "setosa" "setosa" "setosa"
[86] "setosa" "setosa" "setosa" "setosa" "setosa"
[91] "setosa" "setosa" "setosa" "setosa" "setosa"
[96] "setosa" "setosa" "setosa" "setosa" "setosa"
[101] "setosa" "setosa" "setosa" "setosa" "setosa"
[106] "setosa" "setosa" "setosa" "setosa" "setosa"
[111] "setosa" "boundary" "virginica" "virginica" "virginica"
[116] "virginica" "virginica" "virginica" "virginica" "virginica"
[121] "virginica" "virginica" "virginica" "virginica" "virginica"
[126] "virginica" "virginica" "virginica" "virginica" "virginica"
[131] "virginica" "virginica" "virginica" "virginica" "virginica"
[136] "virginica" "virginica" "virginica" "virginica" "virginica"
[141] "virginica" "virginica" "virginica" "virginica" "virginica"
[146] "virginica" "virginica" "virginica" "virginica" "virginica"
[151] "virginica" "versicolor"
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Conclusion
In this paper we presented the package TSP which implements the
infrastructure to handle and solve TSPs. The package introduces classes for
problem descriptions (TSP and ATSP) and for the solution (TOUR). Together
with a simple interface for solving TSPs, it allows for an easy and transparent
usage of the package.

With the interface to Concorde, TSP also can use a state of the art
implementation which efficiently computes exact solutions using
branch-and-cut.

Michael Hahsler and Kurt Hornik 33 Vienna, December 1, 2006



References
D. Applegate, R. E. Bixby, V. Chvátal, and W. Cook. Tsp cuts which do not conform to the template paradigm. In M. Junger

and D. Naddef, editors, Computational Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions,
volume 2241 of Lecture Notes In Computer Science, pages 261–304, London, UK, 2000. Springer-Verlag.

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP Solver , 2006. URL
http://www.tsp.gatech.edu/concorde/.

S. Climer and W. Zhang. Rearrangement clustering: Pitfalls, remedies, and applications. Journal of Machine Learning
Research, 7:919–943, June 2006.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–812, 1958.

R. Garfinkel. Motivation and modeling. In Lawler et al. (1985).

G. Gutin and A. Punnen, editors. The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial
Optimization. Kluwer, Dordrecht, 2002.

M. Held and R. Karp. A dynamic programming approach to sequencing problems. Journal of SIAM , 10:196–210, 1962.

A. Hoffman and P. Wolfe. History. In Lawler et al. (1985).

D. Johnson and C. Papadimitriou. Performance guarantees for heuristics. In Lawler et al. (1985).

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The traveling salesman problem. Wiley, New
York, 1985.

J. Lenstra and A. R. Kan. Some simple applications of the travelling salesman problem. Operational Research Quarterly ,
26(4):717–733, November 1975.

S. Lin. Computer solutions of the traveling-salesman problem. Bell System Technology Journal, 44:2245–2269, 1965.

Michael Hahsler and Kurt Hornik 34 Vienna, December 1, 2006

http://www.tsp.gatech.edu/concorde/


S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2):
498–516, 1973.

D. J. Rosenkrantz, R. E. Stearns, and I. Philip M. Lewis. An analysis of several heuristics for the traveling salesman problem.
SIAM Journal on Computing, 6(3):563–581, 1977.

Michael Hahsler and Kurt Hornik 35 Vienna, December 1, 2006


	Title slide
	Agenda
	The traveling salesperson problem
	Definition
	Alternative representations
	Some types of TSPs
	Some algorithms and heuristics

	Overview
	Solving (A)TSPs
	Currently available algorithms
	Nearest neighbor algorithm
	Insertion algorithms
	Some properties of the insertion algorithms
	Concorde

	Comparing some heuristics
	Comparing some heuristics (cont.)

	Hamiltonian paths
	Hamiltonian paths (cont.)
	Hamiltonian paths (cont.)
	Hamiltonian paths (cont.)
	Hamiltonian paths (cont.)

	Rearrangement clustering
	Conclusion

