## Ordering Objects

## What Heuristic Should We Use?

Michael Hahsler<br>Dept. of Engineering Management, Information, and Systems SMU

November 4, 2015
INFORMS Annual Meeting 2015

SMU.
(1) Introduction and Motivation
(2) Seriation
(3) Loss Functions
(4) Optimization Techniques
(5) Experimental Comparison

## Introduction and Motivation

## Introduction

- Part of Combinatorial Data Analysis (P. Arabie and Hubert 1996)
- Ordering objects to reveal structural information
- Related to ranking


## Some Applications

- Sociology: Find group structure in sociograms
- Psychology: Order subject-by-item response matrix
- Ecology: Analyze plant associations
- Manufacturing: Product flow analysis
- Biology:
* Arrange gene expression data (heat maps)
* Gene sequencing, read assembly using the consecutive ones problem (C1P)
- Visualization:
- Reorder large data tables
- Cluster tendency (visual assessment of cluster tendency, VAT)
- Evaluation of clustering quality (dissimilarity plot)


## Examples

Gene Expression Data


## Examples



## Motivation

Many methods to order objects have been proposed.

## How should we do it?

## Seriation

## Problem Definition

- Arrange a set of $n$ objects

$$
\mathcal{O}=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}
$$

in a linear order given available data and some loss function in order to reveal structural information.

- Data: A symmetric dissimilarity matrix $\mathbf{D}=\left[d_{i j}\right]_{n \times n}$, where $d_{i j}$ represents the dissimilarity between $O_{i}$ and $O_{j}$, and $d_{i i}=0$ for all $i$.
- Linear order: A permutation function $\Psi(\mathbf{D})=P_{\pi} \mathbf{D} P_{\pi}^{T}$, where $\pi$ is the permutation vector and $P_{\pi}$ is the permutation matrix for $\Psi$.


## Problem Definition

- Arrange a set of $n$ objects

$$
\mathcal{O}=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}
$$

in a linear order given available data and some loss function in order to reveal structural information.

- Data: A symmetric dissimilarity matrix $\mathbf{D}=\left[d_{i j}\right]_{n \times n}$, where $d_{i j}$ represents the dissimilarity between $O_{i}$ and $O_{j}$, and $d_{i i}=0$ for all $i$.
- Linear order: A permutation function $\Psi(\mathbf{D})=P_{\pi} \mathbf{D} P_{\pi}^{T}$, where $\pi$ is the permutation vector and $P_{\pi}$ is the permutation matrix for $\Psi$.


## Optimization problem

$$
\Psi^{*}=\underset{\Psi \in \mathcal{P}_{n}}{\operatorname{argmin}} L(\Psi(\mathbf{D})),
$$

where $L$ is a loss function to evaluate how well a given permutation reveals structural information. $\mathcal{P}_{n}$ is the set of all possible permutation functions.

## Example of Seriation

## Original D




Reordered $\Psi(\mathbf{D})$


Typical assumption: Structural information is revealed if more similar objects are presented closer together.

## Issues and Techniques

## Issues

- How do we define the loss function $L$ ?
- Requires to solve a discrete optimization problem with solution space size of $O(n!)$.


## Issues and Techniques

## Issues

- How do we define the loss function $L$ ?
- Requires to solve a discrete optimization problem with solution space size of $O(n!)$.


## Techniques

- Partial enumeration methods (currently solve problems with $n \leq 40$ ):
dynamic programming
- branch-and-bound
- Other discrete optimization methods

QAP formulation
spectral methods

- Heuristics for larger problems


## Loss Functions

## Column/Row Gradient Measures

Perfect anti-Robinson matrix (Robinson 1951): A symmetric matrix where the values in all rows and columns only increase when moving away from the main diagonal. Gradient conditions (L. Hubert, Arabie, and Meulman 1987):
within rows: $d_{i k} \leq d_{i j}$ for $1 \leq i<k<j \leq n$;
within columns: $\quad d_{k j} \leq d_{i j}$ for $1 \leq i<k<j \leq n$.

$\boldsymbol{\Psi}(\mathrm{D})$

| $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{4}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $O_{1}$ | 0 | 1 | 4 |
| $O_{3}$ | 1 | 0 | 2 |
| $O_{2}$ | 4 | 2 | 3 |
| $O_{4}$ | 8 | 0 | 2 |
| $O_{4}$ | 3 | 2 | 0 |

The closer objects are together in the order of the matrix, the higher their similarity. Note: Most matrices can only be brought into a near anti-Robinson form.

## Column/Row Gradient Measures (cont.)

Gradient measure (quantifies the divergence from anti-Robinson form)

$$
L(\mathbf{D})=\sum_{i<k<j} f\left(d_{i k}, d_{i j}\right)+\sum_{i<k<j} f\left(d_{k j}, d_{i j}\right)
$$

where $f(\cdot, \cdot)$ is a function which defines how a violation or satisfaction of a gradient condition for an object triple ( $O_{i}, O_{k}$ and $O_{j}$ ) is counted.

## Column/Row Gradient Measures (cont.)

Gradient measure (quantifies the divergence from anti-Robinson form)

$$
L(\mathbf{D})=\sum_{i<k<j} f\left(d_{i k}, d_{i j}\right)+\sum_{i<k<j} f\left(d_{k j}, d_{i j}\right)
$$

where $f(\cdot, \cdot)$ is a function which defines how a violation or satisfaction of a gradient condition for an object triple ( $O_{i}, O_{k}$ and $O_{j}$ ) is counted.

Raw number of violations minus satisfactions:

$$
f(z, y)=\operatorname{sign}(y-z)=\left\{\begin{array}{rll}
-1 & \text { if } & z>y \\
0 & \text { if } & z=y \\
+1 & \text { if } & z<y
\end{array}\right.
$$

Weight each satisfaction or violation by its magnitude (absolute difference between the values):

$$
f(z, y)=|y-z| \operatorname{sign}(y-z)=y-z
$$

## Anti-Robinson Events/Deviation

An even simpler loss function can be created in the same way as the gradient measures above by concentrating on violations only.

## AR Events

$$
L(\mathbf{D})=\sum_{i<k<j} f\left(d_{i k}, d_{i j}\right)+\sum_{i<k<j} f\left(d_{k j}, d_{i j}\right)
$$

To only count the violations (called events) we use

$$
f(z, y)=I(z, y)= \begin{cases}1 & \text { if } z<y \quad \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

$I(\cdot)$ is an indicator function returning 1 only for violations.
(Chen 2002) also introduced a weighted versions of this loss function by using the absolute deviations as weights:

$$
f(z, y)=|y-z| I(z, y)
$$

## Hamiltonian Path Length

- $\mathbf{D}$ is seen as a complete weighted graph $G=(\Omega, E)$ with $\Omega=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}$ and the weight $w_{i j}$ for edge $e_{i j} \in E$ represents $d_{i j}$.
- An order $\Psi$ can be seen as a Hamiltonian path through the graph.
- Minimizing the path length results in a seriation optimal with respect to dissimilarities between neighboring objects (Hubert 1974, Caraux and Pinloche (2005)).

Loss function:

$$
L(\mathbf{D})=\sum_{i=1}^{n-1} d_{i, i+1}
$$

| $\mathbf{D}$ | $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}_{1}$ | $0_{0}$ | $\mathbf{4}$ | 1 | 8 |
| $\mathrm{O}_{2}$ | 4 | 0 | 2 | 2 |
| $\mathrm{O}_{3}$ | 1 | 2 | 0 | 3 |
| $O_{4}$ | 8 | 2 | 3 | 0 |



This optimization problem is related to the traveling salesperson problem (Gutin and Punnen 2002) for which good solvers and efficient heuristics exist.

## Other Measures

- Inertia criterion (Caraux and Pinloche 2005)
- Least squares criterion (Caraux and Pinloche 2005)
- Measure of Effectiveness (McCormick, Schweitzer, and White 1972)
- Moore and Neumann stress (Niermann 2005)
- Relative generalized Anti-Robinson events (RGAR) (Tien et al. 2008)


## Optimization Techniques

## Partial Enumeration

Directly optimize the column/row gradient measures using:

- Dynamic programming (L. Hubert, Arabie, and Meulman 1987)
- Branch-and-bound (Michael Brusco and Stahl 2005)
solves problems with $n \leq 40$

Heuristics for larger problems:

- Simulated annealing (M. Brusco, Köhn, and Stahl 2007)


## QAP Formulations

## Quadratic Assignment problem

The QAP is in general NP-hard. Methods include QIP, linearization, branch and bound and cutting planes as well as heuristics including Tabu search, simulated annealing, genetic algorithms, and ant systems (Burkhard 1998)

$$
\operatorname{QAP}(\mathbf{A}, \mathbf{B}): \min _{\Psi \in \mathcal{P}_{n}} \sum_{i, j=1}^{n} \mathbf{A}_{i j} \Psi(\mathbf{B})_{i j}
$$

## QAP Formulations

## Quadratic Assignment problem

The QAP is in general NP-hard. Methods include QIP, linearization, branch and bound and cutting planes as well as heuristics including Tabu search, simulated annealing, genetic algorithms, and ant systems (Burkhard 1998)

$$
\operatorname{QAP}(\mathbf{A}, \mathbf{B}): \min _{\Psi \in \mathcal{P}_{n}} \sum_{i, j=1}^{n} \mathbf{A}_{i j} \Psi(\mathbf{B})_{i j}
$$

Formulate as 2-Sum Problem (Barnard, Pothen, and Simon 1993)

$$
\left.\min _{\Psi} \sum_{i, j=1}^{n} \Psi(\mathbf{S})_{i j}(i-j)^{2}\right) \rightarrow \operatorname{QAP}\left(\left[(i-j)^{2}\right]_{n \times n}, \mathbf{S}\right)
$$

where similarity matrix $\mathbf{S}=\frac{1}{1+\mathbf{D}}$

## QAP Formulations

## Quadratic Assignment problem

The QAP is in general NP-hard. Methods include QIP, linearization, branch and bound and cutting planes as well as heuristics including Tabu search, simulated annealing, genetic algorithms, and ant systems (Burkhard 1998)

$$
\operatorname{QAP}(\mathbf{A}, \mathbf{B}): \min _{\Psi \in \mathcal{P}_{n}} \sum_{i, j=1}^{n} \mathbf{A}_{i j} \Psi(\mathbf{B})_{i j}
$$

Formulate as 2-Sum Problem (Barnard, Pothen, and Simon 1993)

$$
\left.\min _{\Psi} \sum_{i, j=1}^{n} \Psi(\mathbf{S})_{i j}(i-j)^{2}\right) \rightarrow \operatorname{QAP}\left(\left[(i-j)^{2}\right]_{n \times n}, \mathbf{S}\right)
$$

where similarity matrix $\mathbf{S}=\frac{1}{1+\mathbf{D}}$
Formulate as Linear Seriation Problem (L. Hubert and Schultz 1976)

$$
\min _{\Psi} \sum_{i, j=1}^{n} \Psi(\mathbf{D})_{i j}(-|i-j|) \rightarrow \operatorname{QAP}\left([-|i-j|]_{n \times n}, \mathbf{D}\right)
$$

## Spectral Seriation

Minimizes the 2-Sum Problem formulation:

$$
\left.\min _{\Psi} \sum_{i, j=1}^{n} \Psi(\mathbf{S})_{i j}(i-j)^{2}\right)
$$

Rewriting the minimization problem using a permutation vector $\pi$, its inverse, rescaling to $q$ and using a Lagrangian multiplier for the constraint on the permutation yields (Ding and He 2004) the following equivalent optimization problem:

$$
\min _{\mathbf{q}} \frac{\mathbf{q}^{T} L_{\mathbf{S}} \mathbf{q}}{\mathbf{q}^{T} \mathbf{q}}
$$

where $L_{\mathbf{S}}$ is the Laplacian of $\mathbf{S}$.
The optimal order can be recovered by the order of the Fielder vector (second smallest eigenvector of the Laplacian).

## Hamiltonian Path

## TSP Solver

- Concorde (fast cutting planes and tour separation)


## Heuristic

- TSP Heuristics (Lin-Kernighan, Nearest neighbors, insertion heuristics, etc.)
- Hierarchical clustering with reordering:
- Gruvaeus-Wainer heuristic (Gruvaeus and Wainer 1972),
- Optimal leaf ordering (Bar-Joseph et al. 2001)


## Other Heuristics

- Hierarchical clustering
- Visual Assessment of cluster Tendency (VAT based on a MST) (Bezdek and Hathaway 2002)
- Multidimensional scaling (metric, non-metric, angle)
- Rank-two ellipse seriation (series of correlation matrices) (Chen 2002).
- Sorting Points Into Neighborhoods (SPIN) (D. Tsafrir et al. 2005)


## Experimental Comparison

## Data Sets

- Pre-Robinson: A pre-Anti-Robinson matrix with 100 objects.
- Random: 200 objects with 2 features independently and uniformly drawn from $[0,1]$ (Euclidean dist.)
- Iris: 150 flowers with 4 features (scaled, Euclidean dist.)
- Zoo: 101 animals with 17 (mostly 0-1) features (Euclidean dist.)
- Votes: 1984 Congressional votes for 435 congress men on 16 key votes: yes, no, abstain (Jaccard index on 32 binary features)
- Wood: 136 poplar trees with normalized gene expression for 6 locations (Euclidean dist.)
- Elutriation: Ratios of gene expression levels for a sample of 100 genes of Saccharomyces cerevisiae with 14 eigengenes (from SVD) as features (Euclidean dist.)


## Comparison: Loss Functions

Compare how different loss functions rank the results of different seriation methods.

Consensus hierarchy for loss functions


Best least square ultrametric approximation over all methods and data sets.

## Method Comparison: Pre-Robinson Data



## Method Comparison: Random Data



## Method Comparison: Votes



## Method Comparison: Anti-Robinson Events



Distribution over all data sets; normalized by largest AR.

## Method Comparison: Path length



Distribution over all data sets; normalized by longest path.

## Compare Resulting Orders

|  | Identity | Random | ARSA | TSP | R2E | MDS_metric | MDS_nonmetric | MDS_angle | HC_single | HC_complete |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 47 | 2 | 1 | 36 | 36 | 1 | 1 | 60 | 12 | 1 |
| 2 | 5 | 56 | 2 | 71 | 71 | 2 | 2 | 47 | 84 | 58 |
| 3 | 25 | 55 | 3 | 41 | 41 | 3 | 3 | 74 | 82 | 90 |
| 4 | 69 | 85 | 4 | 31 | 31 | 33 | 33 | 72 | 28 | 62 |
| 5 | 29 | 26 | 5 | 43 | 43 | 5 | 5 | 88 | 6 | 6 |
| 6 | 26 | 54 | 6 | 68 | 68 | 6 | 6 | 31 | 5 | 5 |
| 7 | 97 | 32 | 7 | 64 | 64 | 7 | 7 | 97 | 9 | 68 |
| 8 | 98 | 59 | 8 | 73 | 73 | 8 | 8 | 4 | 65 | 52 |
| 9 | 94 | 11 | 9 | 90 | 90 | 9 | 9 | 46 | 96 | 78 |
| 10 | 65 | 24 | 10 | 60 | 60 | 10 | 10 | 9 | 95 | 77 |
| 11 | 1 | 43 | 11 | 26 | 26 | 11 | 11 | 2 | 11 | 3 |
| 12 | 53 | 28 | 12 | 55 | 55 | 12 | 12 | 12 | 55 | 95 |
| 13 | 32 | 86 | 13 | 33 | 33 | 31 | 31 | 16 | 30 | 31 |
| 14 | 87 | 5 | 14 | 82 | 82 | 62 | 62 | 15 | 86 | 51 |
| 15 | 64 | 69 | 15 | 44 | 44 | 15 | 15 | 86 | 70 | 42 |
| 16 | 10 | 7 | 16 | 42 | 42 | 20 | 20 | 91 | 91 | 82 |
| 17 | 13 | 79 | 17 | 14 | 14 | 17 | 17 | 70 | 19 | 57 |
| 18 | 19 | 89 | 18 | 34 | 34 | 18 | 18 | 1 | 39 | 84 |
| 19 | 22 | 95 | 19 | 76 | 76 | 22 | 22 | 20 | 57 | 20 |
| 20 | 8 | 46 | 20 | 65 | 65 | 16 | 16 | 84 | 3 | 39 |
| 21 | 63 | 58 | 21 | 93 | 93 | 21 | 21 | 71 | 27 | 65 |
| 22 | 21 | 53 | 22 | 23 | 23 | 19 | 19 | 83 | 79 | 83 |
| 23 | 80 | 63 | 23 | 19 | 19 | 23 | 23 | 43 | 25 | 69 |
| 24 | 6 | 51 | 24 | 96 | 96 | 24 | 24 | 90 | 24 | 19 |
| 25 | 72 | 42 | 25 | 5 | 5 | 43 | 43 | 76 | 62 | 30 |
| 26 | 100 | 35 | 26 | 11 | 11 | 26 | 26 | 37 | 77 | 43 |
| 27 | 45 | 60 | 27 | 35 | 35 | 27 | 27 | 17 | 36 | 56 |
| 28 | 85 | 10 | 28 | 59 | 59 | 28 | 28 | 8 | 41 | 34 |
| 29 | 83 | 82 | 29 | 32 | 32 | 29 | 29 | 28 | 76 | 99 |
| 30 | 67 | 66 | 30 | 50 | 50 | 30 | 30 | 26 | 53 | 87 |

Shown are the object ranks for the pre-Robinson data (first 30 objects sorted by ARSA and first 10 methods).

## Compare Orders (cont.)

Compare the seriation order produced by two methods using

- Kendall's rank-order correlation

Other options would be

- Spearman's rank-order correlation
- Spearman's footrule metric (i.e., Manhattan distance between ranks) (Diaconis 1988)
- Positional proximity coefficient (Goulermas et al 2015)


## Comparison: Pre-Robinson




## Comparison: Random Data



## Comparison: Votes



## Computational Time



## Comparison: Quality and Speed

(1) Rank each algorithm for quality and speed (1 point for the worse, 2 for the next, etc.)
(2) Average points over all data sets.


## Conclusion

In this limited study we empirically found:

- There are two big groups of objective functions
(1) Anti Robinson Events (AR) / Gradient Measure
(2) Path length
- For group 1 (AR) QAP formulations provide a good tradeoff between quality and speed.
- For group 2 (path length) Hierachical Clustering with Optimal Leaf Ordering is fast and also provides quality comparable to TSP solvers.


## Future work

- Even the heuristics (except for the TSP) are poorly scalable to applications with thousands of objects. Faster seriation heuristics are needed.


## Thank you!

All seriation methods are available in the R package seriation.

You can contact me at mhahsler@lyle.smu.edu

## References I

Arabie, P., and L. J. Hubert. 1996. "An Overview of Combinatorial Data Analysis." In Clustering and Classification, edited by P. Arabie, L. J. Hubert, and G. De Soete, 5-63. River Edge, NJ: World Scientific.

Bar-Joseph, Z., E. D. Demaine, D. K. Gifford, and T. Jaakkola. 2001. "Fast Optimal Leaf Ordering for Hierarchical Clustering." Bioinformatics 17 (1): 22-29.

Barnard, S. T., A. Pothen, and H. D. Simon. 1993. "A Spectral Algorithm for Envelope Reduction of Sparse Matrices." In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 493-502. Supercomputing '93. New York, NY, USA: ACM.

Bezdek, J.C., and R.J. Hathaway. 2002. "VAT: A Tool for Visual Assessment of (Cluster) Tendency." In Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN '02), 3:2225-30.

Brusco, M., H. F. Köhn, and S. Stahl. 2007. "Heuristic Implementation ofDynamic Programming for Matrix Permutation Problems in CombinatorialData Analysis." Psychometrika.

Brusco, Michael, and Stephanie Stahl. 2005. Branch-and-Bound Applications in Combinatorial Data Analysis. Springer.
Caraux, G., and S. Pinloche. 2005. "Permutmatrix: A Graphical Environment to Arrange Gene Expression Profiles in Optimal Linear Order." Bioinformatics 21 (7): 1280-81.

Chen, Chun-Houh. 2002. "Generalized Association Plots: Information Visualization via Iteratively Generated Correlation Matrices." Statistica Sinica 12 (1): $7-29$.

Ding, Chris, and Xiaofeng He. 2004. "Linearized Cluster Assignment via Spectral Ordering." In In ICML '04: Proceedings of the Twenty-First International Conference on Machine Learning, 30. ACM Press.

Gruvaeus, G., and H. Wainer. 1972. "Two Additions to Hierarchical Cluster Analysis." British Journal of Mathematical and Statistical Psychology 25: 200-206.

Gutin, G., and A. P. Punnen, eds. 2002. The Traveling Salesman Problem and Its Variations. Vol. 12. Combinatorial Optimization. Dordrecht: Kluwer.
Hubert, L. J. 1974. "Some Applications of Graph Theory and Related Nonmetric Techniques to Problems of Approximate Seriation: The Case of Symmetric Proximity Measures." British Journal of Mathematical Statistics and Psychology 27: 133-53.

Hubert, Lawrence, and James Schultz. 1976. "Quadratic Assignment as a General Data Analysis Strategy." British Journal of Mathematical and Statistical Psychology 29 (2). Blackwell Publishing Ltd: 190-241.

## References II

Hubert, Lawrence, Phipps Arabie, and Jacqueline Meulman. 1987. Combinatorial Data Analysis: Optimization by Dynamic Programming. Society for Industrial Mathematics.

McCormick, William T., Paul J. Schweitzer, and Thomas W. White. 1972. "Problem Decomposition and Data Reorganization by a Clustering Technique." Operations Research 20 (5): 993-1009.

Niermann, Stefan. 2005. "Optimizing the Ordering of Tables with Evolutionary Computation." The American Statistician 59 (1): 41-46.

Robinson, W. S. 1951. "A Method for Chronologically Ordering Archaeological Deposits." American Antiquity 16: 293-301.

Tien, Yin-Jing, Yun-Shien Lee, Han-Ming Wu, and Chun-Houh Chen. 2008. "Methods for Simultaneously Identifying Coherent Local Clusters with Smooth Global Patterns in Gene Expression Profiles." BMC Bioinformatics 9 (155): 1-6.

Tsafrir, Dan, Ilan Tsafrir, Liat Ein-Dor, Or Zuk, Daniel A. Notterman, and Eytan Domany. 2005. Bioinformatics 21 (10): $2301-8$.

