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Association Rules

Mining association rules was first introduced by Agrawal et al. (1993) as:

Let I = {i1, i2, . . . , in} be a set of n binary attributes called items.

Let D = {t1, t2, . . . , tm} be a set of transactions called the database. Each
transaction in D contains a subset of the items in I .

An itemset X is a subset of I .

A rule is defined as an implication of the form

X ⇒ Y

where X and Y are itemsets.
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Association Rules II

Support: supp(X ) is proportion of transactions which contain X

Confidence: conf(X ⇒ Y ) = supp(X ∪Y )/supp(X )

Association rule X ⇒ Y needs to satisfy:

supp(X ∪Y ) ≥ σ and conf(X ⇒ Y ) ≥ δ

Example

{milk, bread} ⇒ {butter}
support = 0.2

confidence = 0.9
lift = 2
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The AR Mining Process

Two-step process

1 Minimum support is used to generate the set of all frequent itemsets.

2 Each frequent itemsets is used to generate all possible rules which satisfy the
minimum confidence constraint.

Worst case: 2n − n − 1 frequent itemsets (size ≥ 2 for n distinct items). Each
frequent generates 2+ rules ⇒ O(2n).

Practical Strategy

Increase minimum support to reduce number of rules ⇒ misses important rules.

We need to be able to deal with large sets of association rules.
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Motivation

Association rule mining is a popular data mining method.

It is known to produce large sets of rules.

Clustering is a well known data reduction method.

Questions
Why is association rule clustering not a standard functionality in data
mining tools?

Why were only so few papers published clustering association rules?
Lent et al. (1997); Gupta et al. (1999); Toivonen et al. (1995); Adomavicius and
Tuzhilin (2001); An et al. (2003); Berrado and Runger (2007)
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The Clustering Problem

Goal
Group a set of m association rules

R = {R1,R2, . . . ,Rm}

into k subsets
S = {S1,S2, . . . ,Sk}

called clusters.

Rules in the same cluster should be more similar to each other than to rules in
different clusters.
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Clustering Binary Vectors

A set of m association rules R can be represented as a set of n-dimensional
vectors

x1,x2, . . . ,xm

where n is the total number of different items in the database. i = 1, 2, . . . ,m.

Example: Rules and Binary Representation
lhs rhs support confidence lift

[1] {tropical fruit,

root vegetables} => {other vegetables} 0.0123 0.585 3.02

[2] {tropical fruit,

root vegetables} => {whole milk} 0.0120 0.570 2.23

tropical fruit root vegetables other vegetables whole milk

[1,] 1 1 1 0

[2,] 1 1 0 1

yogurt rolls/buns bottled water soda

[1,] 0 0 0 0

[2,] 0 0 0 0
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k -Means Problem

Find a cluster assignment S = {S1,S2, . . . ,Sk} which minimizes

WSS =

k∑
i=1

∑
xj∈Si

||xj − µi ||2,

where µi is the cluster centroid.

Advantage:

Fast and efficient heuristics.

Disadvantage:

Implies Euclidean distance, but matching 1s (same items in the rule) are
much more important than matching 0s.
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Jaccard Index

Let Xi and Xj be the set of all items contained in Ri and Rj ,

dJaccard(Xi ,Xj ) = 1− |Xi ∩Xj |
|Xi ∪Xj |

.

I.e., number of items they have in common divided by the number of unique items
in both sets.
Can be used in hierarchical and other clustering techniques.

Comparison

Rules dE dJ
{bread} → {butter} 2 1.42
{beer} → {liquor}
{bread ,milk , cheese} → {butter} 2 0.67
{bread , vegetables, yogurt} → {butter}

Issue: Very sparse binary data.
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Common Covered Transactions

Toivonen et al. (1995) define the distance between two rules with a common
consequent, X → Z and Y → Z , as

dToivonen(X → Z ,Y → Z ) = |m(X ∪ Z )|+ |m(Y ∪ Z )| − 2|m(X ∪Y ∪ Z )|,

where m(X ) is the set of transactions in D which are covered by the rule, i.e.,
m(X ) = {t | t ∈ D ∧X ⊆ t}.

Computes the number of transactions which are covered only by one of the rules
but not by both.
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Common Covered Transactions II

Gupta et al. (1999) define for Xi and Xj , the sets of all items in two rules, the
distance as

dGupta(Xi ,Xj ) = 1− |m(Xi ∪Xj )|
|m(Xi)|+ |m(Xj )| − |m(Xi ∪Xj )|

Proportion of transactions which are covered by both rules in the transactions
which are covered by at least one of the rules.

Advantage:

Avoids the problems of clustering sparse, high-dimensional binary vectors.

Disadvantage:

Introduces a strong bias towards clustering subsets.
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Using Item Hierarchies

Adomavicius and Tuzhilin (2001) use the item hierarchy:

dairy baked
goods

cream
cheese

butter bread beagle

product
group

product

Level

1 Select an appropriate level in the hierarchy.

2 Replacing each item in all rules by the label of the group it belongs to.

3 Rules which are now exactly the same will be grouped.

Example

The two rules {butter} → {bread} and {cream cheese} → {beagles} are both grouped
at the product group level as {dairy} → {baked goods}.

Reduces problems with high dimensionality and sparseness.

Groups substitutes (e.g., bread and beagles) if they are in the same subtree.

Rules have to match exactly to be grouped.
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Issues With Clustering Association Rules

High dimensionality and sparseness: Binary vectors are extremely
high-dimensional and sparse.

Substitutes: Grouping rules with substitutes, e.g., bread and beagles, is
important.

Direction of association: Most approaches do not differentiate between LHS and
RHS.

Computational Complexity: Distance matrix for a set of m rules requires O(m2)
time and space.

Frequent itemset structure: Clustering association rules will just rediscover subset
structure of the frequent itemset lattice.
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Frequent Itemset Structure

{flour} 3{beer} 1 {eggs} 4 {milk} 4

{beer, eggs} 1 {beer, flour} 1 {beer, milk} 0 {eggs, flour} 3 {eggs, milk} 2 {flour,milk} 2

{beer, eggs, flour} 1 {beer, eggs, milk} 0  {eggs, flour, milk} 2{beer, flour, milk} 0

{beer, eggs, flour, milk}   support count = 0

'Frequent Itemsets'
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Grouping Rules Using Lift

Brin et al. (1997) introduced lift as

lift(X ⇒ Y ) =
supp(X ∪Y )

supp(X )supp(Y )

Deviation of independence of LHS and RHS.

1 indicates independence.

Larger lift values (� 1) indicate association.

Idea

Rules with a LHS that have strong dependencies with the same set of RHS (i.e.,
have a high lift value) are similar and thus should be grouped together.

Example

If {butter , cheese} → {bread} and {margarine, cheese} → {bread} have a
similarly high lift, then the LHS should be grouped.
Note: butter and margarine are substitutes!
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Definition

R = {〈X1,Y1, θ1〉, . . . , 〈Xi ,Yi , θi〉, . . . , 〈Xn ,Yn , θn〉}

where Xi is the LHS,

Yi is the RHS and

θi is the lift value for the i -th rule.

Process
1 Find A, the set of unique LHS and C , the unique RHS.

2 Create a A× C matrix M = (mac).

3 Populate with mac = θi where Xi has index a in A and Yi has index c in C .

4 Impute missing values (we use a neutral lift value of 1).

5 Cluster rules by grouping columns and/or rows in M.
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Grouping LHS

We define now the distance between two LHS Xi and Xj as the Euclidean distance

dLift(Xi ,Xj ) = ||mi −mj ||,

where mi and mj are the column vectors representing all rules with the LHS of
Xi and Xj , respectively.

We can use now hierarchical clustering, k -medoids or k -means. For efficiency
reasons we use a k -means heuristic to minimize the WSS

argminS

k∑
i=1

∑
mj∈Si

||mj − µi ||2,

Most tools create rules with a single item in the RHS → no need for grouping.
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Example: Create Rules

R> library("arules")

R> library("arulesViz")

R> data("Groceries")

R> Groceries

transactions in sparse format with

9835 transactions (rows) and

169 items (columns)

R> rules <- apriori(Groceries, parameter=list(support=0.001, confidence=0.5),

+ control=list(verbose=FALSE))

R> rules

set of 5668 rules

R> inspect(head(sort(rules, by="lift"),3))

lhs rhs support

[1] {Instant food products,soda} => {hamburger meat} 0.00122

[2] {soda,popcorn} => {salty snack} 0.00122

[3] {flour,baking powder} => {sugar} 0.00102

confidence lift

[1] 0.632 19.0

[2] 0.632 16.7

[3] 0.556 16.4
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Example: Create Rules

R> plot(rules, method="grouped", control = list(gp_labels= gpar(cex=1), main = ""))

size: support 
color: lift
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{whole milk}
{rolls/buns}
{soda}
{other vegetables}
{yogurt}
{bottled water}
{root vegetables}
{tropical fruit}
{shopping bags}
{pastry}
{sausage}
{citrus fruit}
{whipped/sour cream}
{pip fruit}
{fruit/vegetable juice}
{domestic eggs}
{bottled beer}
{butter}
{curd}
{beef}
{white bread}
{cream cheese }
{sugar}
{salty snack}
{hamburger meat}

LH
S

RHS
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Conclusion

Main Advantages

Avoids high dimensionality and sparsity.
Handles (relatively) large rule sets.
Can group substitute items.
Visualization guides the user automatically to the most interesting
groups/rules.
Easy to understand (similar to matrix-based visualization)

Code
Association rule mining and clustering is implemented in the R extension package
arules (Hahsler et al., 2005). Grouping by lift and visualizations are available in
the extension package arulesViz (Hahsler and Chelluboina, 2016). Both are freely
available from the Comprehensive R Archive Network at

http://CRAN.R-project.org/package=arules.
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