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Section 1

Motivation
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Teaching Portfolio

Data Science
EMIS/DS 1300: A Practical Introduction to Data Science
EMIS 2360: Engineering Economy
EMIS 3309: Information Engineering
EMIS 5/7361 Computer Simulation Techniques
EMIS/CSE 5/7331: Data Mining
EMIS/CSE 8331: Advanced Data Mining
CSE 8091: Advanced Scientific Computing with R

Computer Science
CSE 1341: Principles of Computer Science
CSE 1342: Programming Concepts
CSE 5/7337: Information Retrieval and Web Search
CSE 5/7342: Concepts of Language Theory and Their Applications
CSE 7343: Operating Systems and System Software
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http://michael.hahsler.net

EMM RNA Model

Goal: To apply, implement and improve state-of 
the art techniques for knowledge discovery from 
large scale noisy data. 

Current Focus Areas:
▪ Combinatorial optimization for sequencing 

and ordering problems with applications for 
visualization and scheduling.

▪ Data stream mining with applications to 
hurricane intensity prediction, simulation 
data analytics for earth quake induced 
liquefaction , metagenomics and 
cybersecurity.

▪ Apply reinforcement learning and predictive 
modeling to develop optimal policies. 
Applications are type-2 diabetes decisions 
based on electronic health care records.

Collaborators: 8 SMU faculty, 15 students, 7 
collaborators

Massive-scale Sequence 
Modeling & Data Stream Mining

Meteorology

Simulation Data
Analytics

Metagenomics

Data Science Research

Supported by

Cybersecurity

Health Care Analytics
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Research Software Development + Teaching
= Experiential Learning?
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→ Research Software by Michael Hahsler
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Section 2

Example: Reinforcement Learning
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Reinforcement Learning
“Reinforcement learning is the problem faced by an agent that must learn behavior
through trial-and-error interactions with a dynamic environment.” (Kaelbling,
Littman and Moore 1996)

It is related to optimal control (Bertsekas 1995) and adaptive control (Burghes
and Graham 1980).

Problem
During each step of interaction:

1 the agent receives as input some indication of the current state of the environment s
2 the agent chooses an action a
3 the action changes the state of the environment
4 the value of this state transition is communicated to the agent through a signal r

The objective is typically to choose actions to maximize some notion of cumulative reward.
The environment is often modeled as a Markov Decision Process (MDP).
The considered MDPs are typically

I only approximately known, and
I too large to be solved with dynamic programming.
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Markov Decision Process
A Markov decision process (MDP) is a discrete time stochastic control process (Bellman 1957).

Components:

a set of environment and agent states, S, and a set of actions, A
transition probabilities T (s′ | s, a) = Pr(st+1 = s′ | st = s, at = a)
a immediate reward function R(s, s′, a)
a policy π : S × A→ [0, 1]

Objective: Find the policy that maximizes the expected cumulative discounted reward for horizon H.

E[R] = E

[
H∑

t=0

γ
t
Rt | s0 = s

]

Value iteration (Bellman back-up)
V ∗0 (s) = 0 ∀s ∈ S, For i = 0, 1, . . . , H − 1 and all s ∈ S do

V
∗

i+1(s) = max
a∈A

γ
∑

s′

T (s′ | s, a)
[
R(s, s′, a) + V

∗
i (s′)

]
Policy: Structural results show that it is sufficient to consider policies that are

stationary (i.e., optimal action only depends on the last state), and
deterministic (i.e., π : A× S → {0, 1}).

Michael Hahsler (OIT/EMIS, SMU) Data Science Research Software February 5, 2020 10 / 46



Example: Michael’s Sleepy Tiger Problem

A sleepy tiger is put in front of a door and treasure is put behind the other
door. You can go to a door and open it or do nothing. Whenever you open
a door, the tiger is put randomly in front of a door and treasure is put again
behind the other door. You have 5 tires.
What should you do?

tiger-left Observable statestiger-right

This is easy since you can see the state of the system.
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Code - Michael’s Sleepy Tiger Problem

library(pomdp)

Tiger_MDP <- MDP(
name = "Michael's Sleepy Tiger Problem",
states = c("tiger-left" , "tiger-right"),
actions = c("open-left", "open-right", "do-nothing"),
start = "tiger-left",

transition_prob = list("open-left" = "uniform", "open-right" = "uniform",
"do-nothing" = "identity"),

# the reward helper expects: action, start.state, end.state, observation, value
reward = rbind(

R_("do-nothing", v = 0),
R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100)

)
)
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Code - Michael’s Sleepy Tiger Problem

# do 5 epochs with no discounting
s <- solve_POMDP(Tiger_MDP, discount = 1, horizon = 5)
s

## Solved POMDP model: Michael's Sleepy Tiger Problem
## solution method: grid
## horizon: 5 (converged: FALSE)
## total expected reward (for start probabilities): 50
# policy
plot(s, layout = igraph::layout.grid, edge.curved = TRUE, legend = FALSE)

tiger−lefttiger−right

tiger−left

tiger−right

1:   
open−left

2: initial belief
open−right

plot_value_function(s, ylim = c(-5,100))
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Action

1: open−left
2: open−right
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Useful Markov Decision Processes

Useful MDPs are more complicated:

What if the tiger is not so sleepy and there is a chance that he catches you
when you go to the door with the treasure?
What if the tiger learns and is prepared the next time?
What if you get more and more tired every try and thus get easier to catch?
What if the tiger gets sleepy again if you decide to do nothing for a few tries?
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Tony’s Tiger Problem

A tiger is put with equal probability behind one of two doors, while treasure
is put behind the other door. You can open a door or listen for tiger noises.
However, listening is not perfect. When you open the door then the
problem starts over. What do you do?

(Cassandra, 1994)

→ Why is this so much more difficult?
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Partially Observable Markov Processes

A generalization of a Markov decision process (MDP) where the agent cannot observe the
state of the system directly, but receives a signal (an observation) at the end of every
decision epoch (Åström 1965; Sondik 1971; Kaelbling, Littman and Cassandra 1998).

tiger-left

tiger-left tiger-right

Unobservable states

Observations

Observation 
probabilities

tiger-right

POMDPs add:

A set of observations Ω
Conditional observation probabilities O(o | s′, a) = Pr(ot+1 = o | st+1 = s′, at = a)
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Belief State MDP

tiger-left

tiger-left tiger-right

tiger-right

100%
tiger-left

100%
tiger-right

Belief MDP

...

POMDP

Belief states form a simplex with |S| vertices.

Transitions are reflected by a Belief Update
Let b(s) be the probability that the system is in state s. Given an action a and an
observation o we update the probability using:

b′(s′) = ηO(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s),

where η is a normalization factor.

Issue: The complexity of value iteration becomes |S2 ×A× Ω| H and Belief MDPs have
an infinite state space.
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Code - Tony’s Tiger Problem

Tiger <- POMDP(
name = "Tony's Tiger Problem",

states = c("tiger-left", "tiger-right"),
actions = c("open-left", "open-right", "listen"),
observations = c("tiger-left", "tiger-right"),

transition_prob = list("open-left" = "uniform", "open-right" = "uniform",
"listen" = "identity"),

observation_prob = list("open-left" = "uniform", "open-right" = "uniform",
"listen" = rbind(c(0.85, 0.15),

c(0.15, 0.85))),

reward = rbind(
R_("listen", v = -1),
R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100)

)
)
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Code - Tony’s Tiger Problem

# infinite horizon with discounting to get a converged policy
s <- solve_POMDP(Tiger, discount = .75, horizon = Inf)
s

## Solved POMDP model: Tony's Tiger Problem
## solution method: grid
## horizon: Inf (converged: TRUE)
## total expected reward (for start probabilities): 1.933439
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Policy and Value Function
plot(s, edge.curved = TRUE)
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plot_value_function(s, ylim = c(0,30))
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A Real Example: Diabetes Screening

normal

BMI
normal

BMI
high

pre-diabetes diabetes

dead

Age
old

normal prediabetes diabetes

screened
normal

screened
pre-diabetes

screened
diabetes

dead

From all 
states

Screening
results

Observable 
states

Unobservable
states

Observations
from EHR

Note: This diagram is simplified (e.g.,  self-loops)

Screening 
action

Race
X

Age
young

. . .
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A Real Example: Diabetes Screening

Actions: Screen, do nothing
Estimate transition probabilities T (s′ | s, a)
Estimate reward structure R(s′, s, a, o)
Observation space Ω and observation probabilities O(o | s′, a)

Observations:

Screening results are straight forward.
Other observations can come from electronic health records (EHR)

I 100s of signals (e.g., BMI, age, race, test results, medications)
I missing values (e.g., a test was not performed or recorded)

Issues
What signals from a set Z do we use?
How do we construct a single observations? E.g., Ω = Z1 × Z2 × · · · × Z|Z|
How do we estimate the observation probabilities?
Can we solve a problem with complexity of the order of |S2 ×A× Ω| H

Idea: Use a classifier to aggregate the signals into a small set of observations.
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Classifier to Create Observations

normal

normal` prediabetes

pre-diabetes diabetes

dead

diabetes

normal prediabetes diabetes

screened
normal

screened
pre-diabetes

screened
diabetes

dead

From all 
states

Screening
results

Observable 
states

Unobservable
states

Virtual screening
using a classifier

on EHR data 

Note: This diagram is simplified (e.g.,  missing self-loops)

Screening 
action
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Classifier to Create Observations

Established algorithms and measures of predictive power (accuracy, kappa, AUC, etc.)
Methods for handling missing values.
Regularization and other feature selection methods.
Observation matrix can be estimated from the confusion matrix. Normalize the
reference columns (sometimes rows) to sum to 1.

## Reference
## Prediction Normal Prediabetes Diabetes
## Normal 646 234 33
## Prediabetes 530 507 202
## Diabetes 59 109 93
##
## Overall Statistics
## Accuracy : 0.516 95% CI : (0.496, 0.536)
## Kappa : 0.208
##
## Statistics by Class:
## Class: Normal Class: Prediabetes Class: Diabetes
## Sensitivity 0.523 0.596 0.2835
## Specificity 0.773 0.532 0.9194
## Balanced Accuracy 0.648 0.564 0.6015
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Classifier to Create Observations
Reseach question: If we have several classifiers, which one is better for decision
making?

Classifier 1:

Prediction/ Ref Normal Prediabetes Diabetes
Normal 300 0 0
Prediabetes 0 300 0
Diabetes 0 0 300

Classifier 2:

Prediction/ Ref Normal Prediabetes Diabetes
Normal 100 100 100
Prediabetes 100 100 100
Diabetes 100 100 100
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Classifier to Create Observations

In general, choosing the best classifier depends on the structure of the decision
problem (i.e., transition probabilities and reward structure).

Solution 1 - This is what we did so far
Solve the POMDP with each observation matrix (i.e., classifier) and pick the one
that has the largest total expected reward.

Solution 2 - This is future research
Develop structural results that indicate, given properties of T and R, what
properties O should have.
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Simple Structural Result
Blackwell Dominance
Blackwell dominant observation matrices are better for any class of decision-maker.

O2 ≥B O1

if and only if there exists a stochastic matrix R for which

O1 = O2R

holds (Blackwell, 1951).

Application:

1 solve R = O−1
2 O1.

2 check if R is stochastic.

Issues:

If O2 is not singular → use generalized (quasi) inverse.
Only detects if O2 is a noisy version of O1, but classifiers produce different signals
which cannot be compared using Blackwell dominance. → ε-dominance?
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Example Policy and Belief Space
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Results

Software
New R package pomdp with infrastructure and solvers (pomdp-solve code
contributed by Anthony Cassandra)
See: https://github.com/farzad/pomdp

Experiential Learning Opportunity
1 student co-developer/co-author.
Code development opportunities (e.g., visualization, solvers).
Application opportunities.
Theory development opportunities (structural results).
Reinforcement learning focus for the next Advanced Data Mining course.

Research Output
4 Conference presentations
1 Journal publication under revision
2 Journal publications close to submission
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Section 3

Example: Clustering Association Rules
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Motivation

The aim of association analysis is to find interesting relationships between items (products,
documents, people, genes, etc.) in transaction data.

Rule
A rule is defined as a probabilistic implication of the form

X ⇒ Y

where X and Y are itemsets.

Support: supp(X ⇒ Y ) = P̂ (X,Y ) is proportion of transactions which contain X
and Y .
Confidence: conf(X ⇒ Y ) = supp(X ∪ Y )/supp(X) = P̂ (Y | X)
Association rule X ⇒ Y needs to satisfy:

supp(X ∪ Y ) ≥ σ and conf(X ⇒ Y ) ≥ δ
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Minimum Support

Idea: Set a user-defined threshold for support since more frequent itemsets are typically more
important. E.g., frequently purchased products generally generate more revenue.
Problem: For k items (products) we have 2k − k − 1 possible relationships between items.
Example: k = 100 leads to more than 1030 possible associations.
Apriori property (Agrawal & Srikant 1994): The support of an itemset cannot increase by adding
an item. Example: σ = .4 (support count ≥ 2)

1 0 1 1 1
2 1 1 1 0
3 0 1 0 1
4 0 1 1 1
5 0 0 0 1

Transaction ID beer eggs flour milk

{flour} 3{beer} 1 {eggs} 4 {milk} 4

{beer, eggs} 1 {beer, flour} 1 {beer, milk} 0 {eggs, flour} 3 {eggs, milk} 2 {flour,milk} 2

{beer, eggs, flour} 1 {beer, eggs, milk} 0  {eggs, flour, milk} 2{beer, flour, milk} 0

{beer, eggs, flour, milk}   support count = 0

'Frequent Itemsets'

→ Basis for efficient algorithms (e.g., Apriori, Eclat).
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Minimum Confidence

From the set of frequent itemsets all rules which satisfy the threshold for confidence
conf(X → Y ) = supp(X∪Y )

supp(X) ≥ γ are generated.

{flour} 3{eggs} 4 {milk} 4

{eggs, flour} 3 {eggs, milk} 2 {flour, milk} 2

{eggs, flour, milk} 2

'Frequent itemsets'

Confidence
{eggs} → {flour} 3/4 = 0.75
{flour} → {eggs} 3/3 = 1
{eggs} → {milk} 2/4 = 0.5
{milk} → {eggs} 2/4 = 0.5
{flour} → {milk} 2/3 = 0.67
{milk} → {flour} 2/4 = 0.5
{eggs, flour} → {milk} 2/3 = 0.67
{eggs, milk} → {flour} 2/2 = 1
{flour, milk} → {eggs} 2/2 = 1
{eggs} → {flour, milk} 2/4 = 0.5
{flour} → {eggs, milk} 2/3 = 0.67
{milk} → {eggs, flour} 2/4 = 0.5

At γ = 0.7 the following set of rules is generated:
Support Confidence

{eggs} → {flour} 3/5 = 0.6 3/4 = 0.75
{flour} → {eggs} 3/5 = 0.6 3/3 = 1
{eggs, milk} → {flour} 2/5 = 0.4 2/2 = 1
{flour, milk} → {eggs} 2/5 = 0.4 2/2 = 1
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Code: Mining Association Rules
library(arules)
data(Groceries)
rules <- apriori(Groceries, parameter = list(sup = 0.0005, conf = .5))

## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.5 0.1 1 none FALSE TRUE 5 5e-04 1
## maxlen target ext
## 10 rules FALSE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 4
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.01s].
## sorting and recoding items ... [164 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 7 done [0.05s].
## writing ... [42278 rule(s)] done [0.01s].
## creating S4 object ... done [0.01s].

inspect(rules[1:2])

## lhs rhs support confidence lift count
## [1] {salad dressing} => {other vegetables} 0.00051 0.62 3.2 5
## [2] {rubbing alcohol} => {butter} 0.00051 0.50 9.0 5

Issue: Typically we find many rules and it is hard to make them actionable.
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Grouping Association rules by Clustering

Group a set of m association rules

R = {R1, R2, . . . , Rm}

into k subsets
S = {S1, S2, . . . , Sk}

called clusters.

Such that rules in the same cluster are more similar to each other than to rules in
different clusters.
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Clustering Binary Vectors

A set of m association rules R can be represented as a set of n-dimensional vectors
x1,x2, . . . ,xm, where n is the total number of different items in the database.

k-Means Problem
Find a cluster assignment S = {S1, S2, . . . , Sk} which minimizes

WSS =
k∑

i=1

∑
xj∈Si

||xj − µi||
2,

where µi is the cluster centroid (i.e., the mean of the points in Si).

Advantage:
Fast and efficient heuristics.
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Code: Clustering

cl <- kmeans(as(items(rules), "matrix"), centers = 20)
inspect(head(rules[cl$centers==1], n= 10))

## lhs rhs support confidence lift count
## [1] {chocolate,
## female sanitary products} => {yogurt} 0.00051 0.56 4.0 5
## [2] {tropical fruit,
## female sanitary products} => {citrus fruit} 0.00061 0.75 9.1 6
## [3] {jam,
## soda} => {whole milk} 0.00081 0.62 2.4 8
## [4] {dental care,
## napkins} => {rolls/buns} 0.00051 0.62 3.4 5
## [5] {tropical fruit,
## instant coffee} => {newspapers} 0.00061 0.50 6.3 6
## [6] {whipped/sour cream,
## instant coffee} => {soda} 0.00071 0.54 3.1 7
## [7] {whipped/sour cream,
## instant coffee} => {yogurt} 0.00081 0.62 4.4 8
## [8] {sausage,
## instant coffee} => {soda} 0.00061 0.67 3.8 6
## [9] {instant coffee,
## bottled water} => {other vegetables} 0.00061 0.60 3.1 6
## [10] {tropical fruit,
## instant coffee} => {soda} 0.00081 0.67 3.8 8
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Suggested Solutions and Remaining Issues
Issues:

Implies Euclidean distance, but matching 1s (same items in the rule) are much more
important than matching 0s.
Sparse, high-dimensional binary vectors.

Proposed Solutions: Address issues with dimensionality and sparseness.

Jaccard Index between binary vectors.
Common covered transactions (Toivonen 1995 and Guha 1999).
Use item hierarchies (Tuzhilin 2001).

The following issues remain (Hahsler 2016):

Substitutes: Grouping rules with substitutes, e.g., bread and beagles, is important.
Direction of association: Most approaches do not differentiate between LHS and
RHS.
Computational Complexity: Distance matrix for a set of m rules requires O(m2)
time and space.
Frequent itemset structure: Clustering association rules will just rediscover subset
structure of the frequent itemset lattice.
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Frequent Itemset Structure

{flour} 3{beer} 1 {eggs} 4 {milk} 4

{beer, eggs} 1 {beer, flour} 1 {beer, milk} 0 {eggs, flour} 3 {eggs, milk} 2 {flour,milk} 2

{beer, eggs, flour} 1 {beer, eggs, milk} 0  {eggs, flour, milk} 2{beer, flour, milk} 0

{beer, eggs, flour, milk}   support count = 0

'Frequent Itemsets'
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Frequent Itemset Structure

{flour} 3{beer} 1 {eggs} 4 {milk} 4

{beer, eggs} 1 {beer, flour} 1 {beer, milk} 0 {eggs, flour} 3 {eggs, milk} 2 {flour,milk} 2

{beer, eggs, flour} 1 {beer, eggs, milk} 0  {eggs, flour, milk} 2{beer, flour, milk} 0

{beer, eggs, flour, milk}   support count = 0

'Frequent Itemsets'

Cluster 3

Cluster 2
Cluster 1
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Grouping Rules Using Lift
Brin et al (1997) introduced the lift of an association rules as

lift(X ⇒ Y ) = supp(X ∪ Y )
supp(X)supp(Y ) = P̂ (X,Y )

P̂ (X)P̂ (Y )

Deviation from independence of LHS and RHS.
1 indicates independence.
Larger lift values (� 1) indicate strong association.

Idea (Hahsler 2016)
Rules with a LHS that have strong associations with the same set of RHS (i.e., have a
high lift value) are similar and thus should be grouped together.

Example
If {butter, cheese} → {bread} and {margarine, cheese} → {bread} have a similarly
high lift, then the LHS should be grouped.
Note: butter and margarine are substitutes!
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Clustering Rules using Lift

Let
R = {〈X1, Y1, θ1〉, . . . , 〈Xi, Yi, θi〉, . . . , 〈Xn, Yn, θn〉},

where Xi is the LHS,
Yi is the RHS, and
θi is the lift value for the i-th rule.

Process
1 Find A, the set of unique LHS and C, the unique RHS.
2 Create a A× C matrix M = (mac).
3 Populate with mac = θi where Xi has index a in A and Yi has index c in C.
4 Impute missing values (we use a neutral lift value of 1).
5 Cluster rules by grouping columns and/or rows in M .
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Clustering Rules using Lift

We define now the distance between the LHS of two rules, Xi and Xj , as the Euclidean
distance

dLift(Xi, Xj) = ||mi −mj||,

where mi and mj are the column vectors representing all rules with Xi and Xj ,
respectively.

We can use now hierarchical clustering, k-medoids or k-means. For efficiency reasons we
use a k-means heuristic to minimize the WSS

argminS

k∑
i=1

∑
mj∈Si

||mj − µi||
2,

Note: Most tools create rules with a single item in the RHS → no need for grouping.
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Example
library("arulesViz")
plot(rules, method="grouped", control = list(gp_labels = gpar(cex = .5)), interactive = TRUE)

Grouped Matrix for 42278 Rules

Size: support 
Color: lift
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Results

Software
A family of arules 4 packages on CRAN
30k+ downloads per month
10+ packages by other researchers integrate with arules
See: https://github.com/mhahsler/arules

Experiential Learning Opportunity
4 student co-developers/co-authors
Use in data mining courses/machine learning courses worldwide.
Current development of associative classifiers using Keras/TensorFlow.

Research Output
9 Journal publications
6 Conference proceedings
3 Book chapters
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Thank you!
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