

Electronic Health Record Analytics: The Case of Optimal Diabetes Screening

Michael Hahsler ${ }^{1}$, Farzad Kamalzadeh ${ }^{1}$ Vishal Ahuja ${ }^{1}$, and Michael Bowen²
${ }^{1}$ Southern Methodist University
2 UT Southwestern Medical Center and Parkland Health and Hospital System

EMIS Industry Advisory Board and Outreach Meeting
December 3, 2018

World Changers Shaped Here

SMU

THE STAGGERING COSTS OF DIABETES IN AMERICA

http://main.diabetes.org/dorg/images/infographics/adv-cost-of-diabetes.pdf;

American

 Diabetes Diabetes Care 2013; 36:1033-1046.
Prevalence of Diagnosed and Undiagnosed Type 2 Diabetes and Prediabetes

29.1 million people in the US have T2DM (9.3\% of population)

8.1 Million Undiagnosed

Over 86 million adults in the US with pre-diabetes (37% of population)

77 Million with Undiagnosed Pre-diabetes

Questions of Interest

Optimal screening decision under constraints and uncertainty

- Constraints on resources and patient availability. Population screening is not feasible.
- Individualize the decision based on cohort and patient characteristics.
- Focus on catching the disease (i.e., prevalence) at earlier stages.

Common Screening Strategies

1. Opportunistic Screening
2. Screening Guidelines

- American Diabetes Association (ADA)

OR any age if $\mathrm{BMI} \geq 25$ (or ≥ 23 in Asians) AND an additional risk factor

- U.S. Preventive Services Task Force (USPSTIF) 2015

3. Diabetes Risk Score

- Incidence/prevalence risk score.
- Not widely used in the US.

Jaana Lindström and Jaakko Tuomilehto, The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk, Diabetes Care 2003 Mar; 26(3): 725-731.

Setting and Data

- Setting: Parkland Health and Hospital System, a large integrated, safety-net healthcare system in North Texas.
- Data Source: Epic Electronic Medical Record (EHR)
- Retrospective cohort ($\mathrm{N}=34,297$ patients, 2012-2015)
- Eligibility
- Ages 18-65
- Established patients (≥ 1 primary care visit every 18 month)
- Only unscreened patients with no known diabetes during first 12 month

Available Data Extracted from EHR

105 Features including

- Demographic information: Age, gender, ethnicity, etc.
- Vitals: Blood pressure, etc.
- BMI
- Risk factors (co-morbidities): Hypertension, family history, etc.
- Lab values: Cholesterol, random blood glucose, etc.
- Medications (prescribed): Blood pressure, cholesterol, etc.
- Health care utilization: Office encounters, ER visits, etc.
- Screening results: Hemoglobin A1C, fasting plasma glucose, oral glucose tolerance test

Only demographic information, BMI and vitals are widely available. $>20 \%$ of the data values are missing overall.
$>50 \%$ of lab values missing.

Health Analytics Framework

Partially Observable Markov Decision Process

Sondik, E.J. (1978). "The optimal control of partially observable Markov processes over the infinite horizon: discounted cost". Operations Research. 26 (2): 282-304.

POMDP: Discrete Health Status States

Note: We only know if a patient has (pre)diabetes if we screen the patient.

POMDP: Actions, Transitions and Rewards

Actions: Screen/don't screen
Rewards: Cost of screening, medical expenses, reduced quality of life, lost income

POMDP: Observations and Belief States

Observations give us information about the unobservable health status \rightarrow "Belief State"

POMDP: Observations and Belief States

A new observation results in a change of our "Belief State."

POMDP: Screening Decision Model

Goal: optimal policy. I.e., optimal action for each state to maximize the expected future reward.

Health Analytics Framework

HMM: Learn a Cohort-Specific Disease Progression Model

Sukkar R, Katz E, Zhang Y, Raunig D, Wyman BT, Disease progression modeling using Hidden Markov Models. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2845-8.

Health Analytics Framework

Predictive Risk Model

Collins et al., Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting,

Observations via Predictive Modeling

- Idea: Use predictive modeling (classification) to learn the relationship between clinical observations recorded in EHR and the unobservable health state. Predictions can be used as personalized observations resembling a "Virtual Screening."
- Our key questions are:
- How to we produce simple predictive models to guide screening using only already available data?
- How do we deal with a large quantity of missing data and data quality issues?
- Desired properties:
- Applicable to all patients, no matter how much information we have.
- Can guide us to what missing patient information would be most valuable.

Comparison of Some Predictive Models

	AUC	Availability
LASSO (best)	77%	100%
NB (select feat.)	76%	100%
NB (10)	74%	100%
LASSO (10)	73%	100%
RBG (avg)	76%	64%
BMI	67%	87%
RBG (std. dev.)	65%	15%
BP	63%	99%
HDL Ratio	61%	50%
Age	58%	100%

LASSO: Logistic Regression with Regularization NB: Naïve Bayes Classifier
RBG: Random Blood Glucose Test

POMDP: Parameters

Disease Progression (Transitions)

$\mathcal{P}=$| H |
| :---: |
| P |
| D |
| Δ |\(\left(\begin{array}{cccc}0.9438 \& 0.048 \& 0 \& 0.0082

0.0328 \& 0.9242 \& 0.0348 \& 0.0082

0 \& 0 \& 0.9916 \& 0.0084

0 \& 0 \& 0 \& 1\end{array}\right)\)

Risk Prediction Performance

$$
O(o \mid s)=\begin{array}{r}
H \\
D
\end{array}\left(\begin{array}{ccc}
0.8 & 0.15 & 0.05 \\
0.15 & 0.7 & 0.15 \\
0.05 & 0.25 & 0.7
\end{array}\right)
$$

Rewards (from Literature)

Parameter	Description	Source	Patient	Healithcare system	Society
C_{S}	Cost of a diabetes screening test	[55][56][57][16]	\$134+\$192	\$8020	\$8346
Q	Quality-Adjusted Life Year in U.S. dollars	[58]	\$50,000		\$50,000
C_{D}	Direct medical costs per year for new-onset diabetes	[55]		\$4,174	\$4,174
C_{P}	Incremental direct medical costs per year for a patient with prediabetes	[55]		\$1,316	\$1,316
α_{p}	Annual utility decrease of living with prediabetes	[59][60]		0.16	
$\alpha_{U D}$	Annual utility decrease of living with undiagnosed diabetes	[59][61][62][63]		0.2	
$\alpha_{D D}$	Annual utility decrease of living with diagnosed diabetes	[59][61][62][63]		0.18	
m_{T}	Age-Adjusted mortality rate in U.S. in 2016	[53][64]		0.0084	
m_{D}	Age-adjusted mortality rate for Diabetes in 2016	[53][64]		0.00021	
l_{e}	Life expectancy for the U.S. population in 2016	[53]		78.7	
l_{d}	Lifespan decrement due to Diabetes	[65]		5	
u_{r}	Uptake rate of Diabetes screening	[66][67][68][69][70]		0.644	

POMDP: Optimal Screening Policy

- We maintain for each patient a belief state.
- The belief state is updated with each new observation.
- The policy is a set of all considered belief states with the optimal action for each state.

Initial belief state

POMDP: Optimal Screening Policy

Effectiveness compared to Opportunistic Screening

ADA

Screening Policy	ICER (incr. cost per QALY) (SD)	Years Gained (SD)	QALYs gained (SD)	Diagnosis lead time reduction (SD)	Macrovascular events prevented (SD)	Microvascular events prevented (SD)	Deaths prevented (SD)
30+, every 3 years	$\$ 27,042$ (1268)	0.75 (0.04)	2.04 (0.05)	$19(0.2)$	$22(1.6)$	$207(4)$	$48(2)$
$45+$ every year	$\$ 37,366$ (1755)	0.62 (0.04)	1.18 (0.03)	$14(0.1)$	$21(1.5)$	$178(4)$	$45(2)$
$45+$ every 3	$\$ 31,155$ (1791)	0.61 (0.04)	0.96 (0.03)	$11(0.1)$	$20(1.4)$	$165(4)$	$44(2)$
years							

Tony Hsiu-Hsi Chen, Ming-Fang Yen, Tao-Hsin Tung. A computer simulation model for cost-effectiveness analysis of mass screening for Type 2 diabetes mellitus, Diabetes Research and Clinical Practice 54 Suppl. 1 (2001) S37- S42

Limitations and Future Steps

- HMM: Estimation of transition probabilities may be biased because it is based on actually screened patients.
- Predictive Model: Missing data and data quality are a big issues.
- POMDP
- Cost/reward structure in POMDP (e.g., real cost depends on time in a state)
- Process is most likely not Markovian (more states can represent dependence on past information).
- Other dimensions for the state space (E.g., age or BMI)? Make the model harder to solve due to an explosion of the number of belief states.
- Set of possible/available actions (e.g., other interventions including diet and exercise).

