
Selective Association Rule Generation1

Michael Hahsler1, Christian Buchta2 and Kurt Hornik3

1Department of Information Systems and Operations, Wirtschaftsuniversität
Wien, Austria
2Institute for Tourism and Leisure Studies, Wirtschaftsuniversität Wien, Austria
3Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Austria

Summary

Mining association rules is a popular and well researched method for discov-
ering interesting relations between variables in large databases. A practical
problem is that at medium to low support values often a large number of fre-
quent itemsets and an even larger number of association rules are found in a
database. A widely used approach is to gradually increase minimum support
and minimum confidence or to filter the found rules using increasingly strict
constraints on additional measures of interestingness until the set of rules
found is reduced to a manageable size. In this paper we describe a differ-
ent approach which is based on the idea to first define a set of “interesting”
itemsets (e.g., by a mixture of mining and expert knowledge) and then, in a
second step to selectively generate rules for only these itemsets. The main
advantage of this approach over increasing thresholds or filtering rules is that
the number of rules found is significantly reduced while at the same time it is
not necessary to increase the support and confidence thresholds which might
lead to missing important information in the database.

Keywords: Data mining, Association rules, Rule generation

1Accepted for publication by Comutational Statistics (http://www.springerlink.com/)

http://www.springerlink.com/


1

1 Motivation

Mining association rules is a popular and well researched method for discov-
ering interesting relations between variables in large databases. Piatetsky-
Shapiro (1991) describes analyzing and presenting strong rules discovered in
databases using different measures of interestingness. Based on the concept
of strong rules, Agrawal et al. (1993) introduced association rules for discov-
ering regularities between products in large scale transaction data recorded
by point-of-sale systems in supermarkets. For example, the rule

{onions, vegetables} ⇒ {beef}

found in the sales data of a supermarket would indicate that if a customer
buys onions and vegetables together, he or she is likely to also buy beef. Such
information can be used as the basis for decisions about marketing activities
such as, e.g., promotional pricing or product placements. Today, association
rules are employed in many application areas including Web usage pattern
analysis (Srivastava et al. 2000), intrusion detection (Luo & Bridges 2000)
and bioinformatics (Creighton & Hanash 2003).

Formally, the problem of mining association rules from transaction data can
be stated as follows (Agrawal et al. 1993). Let I = {i1, i2, . . . , in} be a
set of n binary attributes called items. Let D = {t1, t2, . . . , tm} be a set
of transactions called the database. Each transaction in D has a unique
transaction ID and contains a subset of the items in I. A rule is defined as
an implication of the form X ⇒ Y where X, Y ⊆ I and X ∩ Y = ∅. The sets
of items (for short itemsets) X and Y are called antecedent (left-hand-side
or LHS) and consequent (right-hand-side or RHS) of the rule, respectively.

To select interesting rules from the set of all possible rules, constraints on
various measures of significance and strength can be used. The best-known
constraints are minimum thresholds on support and confidence. The support
of an itemset is defined as the proportion of transactions in the data set which
contain the itemset. All itemsets which have a support above a user-specified
minimum support threshold are called frequent itemsets. The confidence of
a rule X ⇒ Y is defined as conf(X ⇒ Y ) = supp(X ∪ Y )/supp(X). This
can be interpreted as an estimate of the probability P (Y |X), the probability
of finding the RHS of the rule in transactions under the condition that these
transactions also contain the LHS (e.g., Hipp et al. 2000).

Association rules are required to satisfy a user-specified minimum support
and a user-specified minimum confidence at the same time. Association rule
generation is always a two-step process. First, minimum support is applied
to find all frequent itemsets in a database. In a second step, these frequent
itemsets and the minimum confidence constraint are used to form rules.

At medium to low support values, usually a large number of frequent item-



2

sets and an even larger number of association rules are found in a database
which makes analyzing the rules extremely time consuming or even impos-
sible. Several solutions to this problem were proposed. A practical strategy
is to either increase the user-specified support or confidence threshold to re-
duce the number of mined rules. It is also popular to filter or rank found
rules using additional interest measures (e.g., the measures analyzed by Tan
et al. (2004)). However, increasing thresholds and filtering rules till a man-
ageable number is left can lead to the problem that only already obvious and
well-known rules are found.

Alternatively, each rule found can be matched against a set of expert-generated
rule templates to decide whether it is interesting or not (Klemettinen et al.
1994). For the same purpose, Imielinski & Virmani (1998) describe a query
language to retrieve rules matching certain criteria from a large set of mined
rules. A more efficient approach is to apply additional constraints on item
appearance or on additional interest measures already during mining item-
sets (e.g., Bayardo et al. 2000, Srikant et al. 1997). With this technique, the
time to mine large databases and the number of found itemsets can signif-
icantly be reduced. The popular Apriori implementation by Borgelt (2006)
as well as some commercial data mining tools provide a similar mechanism
where the user can specify which items have to or cannot be part of the LHS
or the RHS of the rule.

In this paper we discuss a new approach. Instead of treating mining associ-
ation rules from transaction data as a single two-step process where maybe
the structure of rules can be specified (e.g., by templates), we completely
decouple rule generation from frequent itemset mining in order to gain more
flexibility. With our approach, rules can be generated from an arbitrary sets
of itemsets. This gives the analyst the possibility to use any method to de-
fine a set of “interesting” itemsets and then generate rules from only these
itemsets. Interesting itemsets can be the result of using a mixture of ad-
ditional constraints during mining, arbitrary filtering operations and expert
knowledge.

2 Efficient selective rule generation

For convenience, we introduce X = {X1, X2, . . . , Xl} for sets of l itemsets.
Analogously, we define R for sets of rules.

Generating association rules is always separated into two tasks, first, mining
all frequent itemsets Xf and then generating a set of rules R from Xf . Ex-
tensive research exists for the first task (see, e.g., Hipp et al. 2000, Goethals
& Zaki 2004), therefore, we concentrate in the following on the second task,
the rule generation.



3

In the general case of rules with an arbitrary size of the rule’s right-hand-side,
for each itemset Z ∈ X with size k we have to check confidence for 2k − 2
rules Z \Y ⇒ Y resulting from using all non-empty proper subsets Y of Z as
a rule’s RHS. For sets with large itemsets this clearly leads to an enormous
computational burden. Therefore, most implementations and also this paper
follows the original definition of Agrawal et al. (1993) who restrict Y to single
items, which reduces the problem to only k checks for an itemset of length k.

The rule generation engine for the popular Apriori algorithm (e.g., the imple-
mentation by Borgelt (2003, 2006)) efficiently generates rules by reusing the
data structure built level-wise during counting the support and determining
the frequent itemsets. The data structure contains all support information
and provides fast access for calculating rule confidences and other measures
of interestingness.

If a set of itemsets X is generated by some other means, no such data structure
might be available. Since the downward-closure property of support (Agrawal
& Srikant 1994) guarantees that for a frequent itemset also all its subsets are
frequent, the data structure can be rebuilt from a complete set of all frequent
itemsets and their support values. However, the aim of this paper is to
efficiently induce rules from an arbitrary set of itemsets which, e.g., could be
specified by an expert without the help of a data mining tool. In this case,
the support information needed to calculate confidence is not available. For
example, if all available information is an itemset containing five items and
it is desired to generate all possible rules containing all items of this itemset,
the support of the itemset (which we might know) and the supports of all its
subsets of length four are needed. This missing support information has to
be obtained from the database.

A simple method would be to reuse an implementation of the Apriori algo-
rithm with the support of the least frequent itemset in X . If this support
is known, Xf ⊇ X will be found. Otherwise, the user has to iteratively re-
duce the minimum support till the found Xf contains all itemsets in X . The
rule generation engine will then produce the set of all rules which can be
generated for all itemsets in Xf . From this set all rules which do not stem
from the itemsets in X have to be filtered, leaving only the desired rules.
Obviously, this is an ineffective method which potentially generates an enor-
mous number of rules of which the majority has to be filtered, representing
an additional large computational effort. The problem can be reduced using
several restrictions. For example, we can restrict the maximal length of fre-
quent itemsets to the length of the longest itemset in X . Another reduction
of computational complexity can be achieved by removing all items which do
not occur in an itemset in X from the database before mining. However, this
process is still far from being efficient, especially if many itemsets in X share
some items or if X contains some very infrequent itemsets.



4

To efficiently generate rules for a given confidence or other measure of rule
strength from an arbitrary set of itemsets X the following steps are necessary:

1. Count the support values each itemset X ∈ X and the subsets {X\{x} :
x ∈ X} needed for rule generation in a single pass over the database
and store them in a suitable data structure.

2. Populate set R by selectively generating only rules for the itemsets in
X using the support information from the data structure created in
step 1.

This approach has the advantage that no expensive rule filtering is necessary
and that combinatorial explosion due to some very infrequent itemsets in X
is avoided.

The data structure for the needed support counters needs to provide fast
access for counting and retrieving the support counts. A suitable data struc-
ture is a prefix tree (Knuth 1997). Typically, prefix trees are used in frequent
itemset mining as condensed representations for the databases. Here the
items in transactions are lexically ordered and each node contains the occur-
rence counter for a prefix in the transactions. The nodes are organized such
that nodes with a common prefix are in the same subtree. The database in
Table 1 is represented by the prefix tree in Figure 1 where each node contains
a prefix and the count for the prefix in the database. For example, the first
transaction {a, b, c} was responsible for creating (if the nodes did not already
exist) the nodes with the prefixes a, ab and abc and increasing each node’s
count by one.

Although adding transactions to a prefix tree is very efficient, obtaining the
counts for itemsets from the tree is expensive since several nodes have to be
visited and their counts have to be added up. For example, to retrieve the
support of itemset X = {d, e} from the prefix tree in Figure 1, all nodes except
abce, bce and e have to be visited. Therefore, for selective rule generation,
where the counts for individual itemsets have to be obtained, using such a
transaction prefix tree is not very efficient.

For selective rule generation we use a prefix tree similar to the itemset tree
described by Borgelt & Kruse (2002). However, we do not generate the tree
level-wise, but we first generate a prefix tree which only contains the nodes
necessary to hold the counters for all itemsets which need to be counted.
For example, for generating rules for the itemset {a, b, c}, we need to count
the itemset and in addition {a, b}, {a, c} and {b, c}. The corresponding prefix
tree is shown in Figure 2(a). The tree contains the nodes for the itemsets plus
the necessary nodes to make it a prefix tree and all counters are initialized
with zero. Note that with an increasing number of itemsets, the growth of
nodes in the tree will decrease since itemsets typically share items and thus
will also share nodes in the tree.



5

TID Items
1 {a, b, c}
2 {b, c, e}
3 {e}
4 {a, b, c, e}
5 {b}
6 {a, c}
7 {d, e}
8 {a, b}

Table 1: Example database

a:4 d:1

ab:3

e:1

a b d e

b c

c
bc:1

c

bce:1

e
de:1

e

abce:1
e

abc:2

b:2

ac:1

Figure 1: Prefix tree as a condensed representation of a database.

a:0

ab:0

a b

b c

c
bc:0

c

abc:0

b:0

ac:0

a:4

ab:3

a b

b c

c
bc:3

c

abc:2

b:4

ac:3

(a) (b)

Figure 2: Prefix tree for itemset counting. (a) contains the empty tree to
count the needed itemsets for rules containing {a, b, c} and (b) contains the
counts.



6

count(t, p)
1 if t.size > 0
2 then n← successor(t[1], p)
3 if n 6= nil
4 then n.counter++
5 count(t[2 . . . k], n)
6 count(t[2 . . . k], p)
7 return

Table 2: Recursive itemset counting function

After creating the tree, we count the itemsets for each transaction using
the recursive function in Table 2. The function count(t, p) is called with a
transaction (as an array t[1 . . . k] representing a totally ordered set of items)
and the root node of the prefix tree. Initially, we test if the transaction is
empty (line 1) and if so, the recursion is done. In line 2, we try to get the
successor node of the current node that corresponds to the first item in t. If
a node n is found, we increase the node’s counter and continue recursively
counting with the remainder of the transaction (lines 4 and 5). Otherwise, no
further counting is needed in this branch of the tree. Finally, we recursively
count the transaction with the first element removed also into the subtree
with the root node p (line 6). This is necessary to count all itemsets that are
covered by a transaction. For example, counting the transaction {a, b, c, e}
in the prefix tree in Figure 2 increases the nodes a, ab, abc, ac, b, and bc by
one.

There are several options to implement the structure of an n-ary prefix tree
(e.g., each node contains an array of pointers or a hash table is used). In the
implementation used for the experiments in this paper, we use a linked list
to store all direct successors of a node. This structure is simple and memory-
efficient but has the price of an increased time complexity for searching a
successor node in the recursive itemset counting function (see line 2 in Ta-
ble 2). However, this drawback can be mitigated by first ordering the items
by their inverse item-frequency. This makes sure that items which occur of-
ten in the database are always placed near to the beginning of the linked
lists.

After counting, the support for each itemset is contained in the node with the
prefix equal to the itemset. Therefore, we can retrieve the needed support
values from the prefix tree and generating the rules is straight forward.



7

Adult T10I4D100K POS
Source questionnaire artificial e-commerce
Transactions 48,842 100,000 515,597
Mean transaction size 12.5 10.1 6.5
Median transaction size 13.0 10.0 4.0
Distinct items 115 870 1,657
Min. support 0.002 0.0001 0.00055
Min. confidence 0.8 0.8 0.8
Frequent itemsets 466,574 411,365 466,999
Rules 1.181,893 570,908 361,593

Table 3: The used data sets.

3 Experimental results

We implemented the proposed selective rule generation procedure using C
code and added it to the R package arules (Hahsler et al. 2007)1. To ex-
amine the efficiency we use the three different data sets shown in Table 3.
The Adult data set was extracted by Kohavi (1996) from the census bu-
reau database in 1994 and is available from the UCI Repository of Machine
Learning Databases (Newman et al. 1998). The continuous attributes were
mapped to ordinal attributes and each attribute’s values was coded by an
item. The recoded data set is also included in package arules. T10I4D100K
is an artificially generated standard data set using the procedure presented
by Agrawal & Srikant (1994) which is used for evaluation in many papers.
POS is an e-commerce data set containing several years of point-of-sale data
which was provided by Blue Martini Software for the KDD Cup 2000 (Ko-
havi et al. 2000). The size of these three data sets varies from relatively small
with less than 50,000 transactions and about 100 items to more than 500,000
transactions and 1,500 items. Also the sources are diverse and, therefore, us-
ing these data sets should provide insights into the efficiency of the proposed
approach.

We compare the running time behavior of the proposed rule generation
method with the highly optimized Apriori implementation by Borgelt (2006)
which produces association rules. For Apriori, we use the following settings:

• Instead of the support stated in Table 3, we use the smallest support
value of an itemset in X as the minimum support constraint and we
restrict mining to itemsets no longer than the longest itemset in X .
Also, we remove all items which do not occur in X from the database
prior to mining. These settings significantly reduce the search space

1The source code is freely available and can be downloaded together with the package
arules from http://CRAN.R-project.org. Selective rule generation was added to arules in
version 0.6-0.

http://CRAN.R-project.org


8

and therefore also Apriori’s execution time. However, it has to be
noted that setting the minimum support requires that the support of
all itemsets in X is known. This is not the case if some itemsets in X
are defined by an expert without mining the database. In this case, one
would have to use trial and error to find the optimal value.

• For the comparison, we omit the expensive filter operation to find only
the rules stemming from X . Therefore, using Apriori for selective rule
generation will take more than the reported time.

To generate for each data set a pool of interesting itemsets, we mine frequent
itemsets with a minimum support such that we obtain between 400,000 and
500,000 itemsets (see Table 3). From this pool, we take random samples
which represent the sets of itemsets X we want to produce rules for. We use
a minimum confidence of 0.8 for all experiments. We vary the size of X from
1 to 20,000 itemsets, repeat the procedure for each size 100 times and report
the average execution times for the three data sets in Figures 3 to 5.

For Apriori, the execution time reaches a plateau already for a few 100 to
a few 1000 itemsets in X and is then almost constant, for all data sets con-
sidered. At that point Apriori already efficiently mines all rules up to the
smallest necessary minimum support and the specified minimum confidence.
The running time of the selective rule generation increases sub-linearly with
the number of interesting itemsets. The increase results from the fact that
with more itemsets in X , the prefix tree increases in size and therefore the
counting procedure has to visit more nodes and gets slower. The increase
is sub-linear because with an increasing number of itemsets the chances in-
crease that several itemsets share nodes which slows down the growth of the
tree size.

Figures 3 to 5 show that for up to 20,000 itemsets in X , the selective rule
generation is usually much faster than mining rules with Apriori even though
the expensive filtering procedure was omitted. Only on the Adult data set the
proposed method is slower than Apriori for more than about 18,000 itemsets
in X . The reason is that at some point, the prefix tree for counting contains
too many notes and performance deteriorates compared to the efficient level-
wise counting of all frequent itemsets employed by Apriori.

The selective rule generation procedure represents an significant improvement
for selectively mining rules for a small set of (a few thousand) interesting
itemsets. On the modern desktop PC (we used a single core of an Intel Core2
CPU at 2.40GHz), the results can be found typically under one second while
using Apriori alone without filtering takes already several times that long.
This improvement of getting results almost instantly is crucial since it enables
the analyst to interactively examine data.



9

0 5000 10000 15000 20000

0
1

2
3

4
5

6

Adult

Number of itemsets

T
im

e 
[s

ec
.]

Selective generation
Apriori

Figure 3: Running time for the Adult data set.

0 5000 10000 15000 20000

0
1

2
3

4
5

6

T10I4D100K

Number of itemsets

T
im

e 
[s

ec
.]

Selective generation
Apriori

Figure 4: Running time for the T10I4D100K data set.



10

0 5000 10000 15000 20000

0
5

10
15

20
25

POS

Number of itemsets

T
im

e 
[s

ec
.]

Selective generation
Apriori

Figure 5: Running time for the POS data set.

4 Application example

As a small example for the application of selective rule generation, we use
the Mushroom data set (Newman et al. 1998) which describes 23 species of
gilled mushrooms in the Agaricus and Lepiota family. The data set contains
8124 examples described by 23 nominal-valued attributes (e.g., cap-shape,
odor and class (edible or poisonous)). By using one binary variable for each
possible attribute value to indicate if an example possesses the attribute
value, the 23 attributes are recoded into 128 binary items.

Using traditional techniques of association rule mining, an analyst could pro-
ceed as follows. Using a minimum support of 0.2 results in 45,397 frequent
itemsets. With a minimum confidence of 0.9 this gives 281,623 rules. If the
analyst is only interested in rules which indicate edibility, the following rule
inclusive template can be used to filter rules:

any attribute* ⇒ any class

Following the notation by Klemettinen et al. (1994), the LHS of the tem-
plate means that it matches any combination of items for any attribute
and the RHS only matches the two items derived from the attribute class
(class=edible and class=poisonous). Using the rule template to filter



11

the rules reduces the set to 18,328 rules which is clearly too large for visual
inspection.

For selective rule generation introduced in this paper, the expert can decide
which itemsets are of interest to gain new insights into the data. For exam-
ple, the concept of frequent closed itemsets can be used to select interesting
itemsets. Using frequent closed itemsets is an approach to reduce the num-
ber of mined itemsets without loss of information. An itemset is closed if no
proper superset of the itemset is contained in each transaction in which the
itemset is contained (Pasquier et al. 1999, Zaki 2004). Frequent closed item-
sets are a subset of frequent itemsets which preserve all support information
available in frequent itemsets. Often the set of all frequent closed itemsets is
considerably smaller than the set of all frequent itemsets and thus easier to
handle.

Mining closed frequent itemsets on the Mushroom data set with a minimum
support of 0.2 results in 1231 itemsets. By generating rules only for these
itemsets we get 4688 rules. Using the rule template as above leaves 154 rules,
which are way more manageable than the more than 100 times larger set
obtained from just using frequent itemsets.

To compare the sets of rules from the set of frequent itemsets with the rules
from the reduced set of (frequent closed) itemsets, we sort the found rules
in descending order first by confidence and then by support. In Tables 4
and 5 we inspect the first few rules of each set. For the rules generated from
frequent itemsets (Table 4) we see that rules 1 and 2, and also rules 3 to 5
each have exactly the same values for support and confidence. This can be
explained by the fact that only items are added to the LHS of the rules which
are also contained in every transaction the item in the LHS are contained in.
For example, for rule 2 the item veil-type=partial is added to the LHS of
rule 1. Depending on the type of application the rules are mined for, one of
the rules is redundant. If the aim is prediction, the shorter rule suffices. If the
aim is to understand the structure of the data, the longer rule is preferable.
For rules 3 to 5 the redundancy is even bigger. Inspecting the rest of the
rules reveals that for rule 3 a total of 38 redundant rules are contained in the
set.

Using closed frequent itemsets avoids such redundancies while retaining all
information which is present in the set of rules mined from frequent itemsets.
For example, for the two redundant rules (rules 1 and 2 in Table 4) the first
rule with {odor=none, gill-size=broad, ring-number=one} in the LHS
is not present in Table 5. The second rule in Table 5 covers rules 3 to 5 in
Table 4 plus 35 more rules (not shown in the table).

Using closed frequent itemsets is just one option. Using selective rule gener-
ation, the expert can define arbitrary sets of interesting itemsets to generate
rules in an efficient way.



12

lhs rhs supp. conf.

1 {odor=none,

gill-size=broad,

ring-number=one} => {class=edible} 0.331 1

2 {odor=none,

gill-size=broad,

veil-type=partial,

ring-number=one} => {class=edible} 0.331 1

3 {odor=none,

stalk-shape=tapering} => {class=edible} 0.307 1

4 {odor=none,

gill-size=broad,

stalk-shape=tapering} => {class=edible} 0.307 1

5 {odor=none,

stalk-shape=tapering,

ring-number=one} => {class=edible} 0.307 1

Table 4: Rules generated from frequent itemsets.

lhs rhs supp. conf.

1 {odor=none,

gill-size=broad,

veil-type=partial,

ring-number=one} => {class=edible} 0.331 1

2 {odor=none,

gill-attachment=free,

gill-size=broad,

stalk-shape=tapering,

veil-type=partial,

veil-color=white,

ring-number=one} => {class=edible} 0.307 1

3 {odor=none,

gill-size=broad,

stalk-surface-below-ring=smooth,

veil-type=partial,

ring-number=one} => {class=edible} 0.284 1

Table 5: Rules generated from frequent closed itemsets.



13

5 Conclusion

Mining rules not only for sets of frequent itemsets but from arbitrary sets
of possibly even relatively infrequent itemsets can be helpful to concentrate
on “interesting” itemsets. For this purpose, we described in this paper how
to decouple the processes of frequent itemset mining and rule generation
by proposing an procedure which obtains all needed information in a self-
contained selective rule generation process. Since selective rule generation
does not rely on finding frequent itemsets using a minimum support thresh-
old, generating itemsets from itemsets with small support does not result in
combinatorial explosion.

Experiments with several data sets show that the proposed process is effi-
cient for small sets of interesting itemsets. Unlike existing methods based
on frequent itemset mining, selective rule generation can support interactive
data analysis by providing almost instantly the resulting rules. With a small
application example using frequent closed itemsets instead as the interesting
itemsets, we also illustrated that selective association rule generation can be
useful for significantly reducing the number of rules found.

References

Agrawal, R., Imielinski, T. & Swami, A. (1993), Mining association rules
between sets of items in large databases, in ‘Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data’, ACM Press,
pp. 207–216.

Agrawal, R. & Srikant, R. (1994), Fast algorithms for mining association
rules, in J. B. Bocca, M. Jarke & C. Zaniolo, eds, ‘Proc. 20th Int. Conf.
Very Large Data Bases, VLDB’, Morgan Kaufmann, pp. 487–499.

Bayardo, R. J., Agrawal, R. & Gunopulos, D. (2000), ‘Constraint-based rule
mining in large, dense databases’, Data Mining and Knowledge Discovery
4(2/3), 217–240.

Borgelt, C. (2003), Efficient implementations of Apriori and Eclat, in
‘FIMI’03: Proceedings of the IEEE ICDM Workshop on Frequent Item-
set Mining Implementations’.

Borgelt, C. (2006), Apriori – Association Rule Induction, School of Computer
Science, Otto-von-Guericke-University of Magdeburg.
URL: http://fuzzy.cs.uni-magdeburg.de/∼borgelt/apriori.html

Borgelt, C. & Kruse, R. (2002), Induction of association rules: Apriori im-
plementation, in ‘Proceedings of the 15th Conference on Computational



14

Statistics (Compstat 2002, Berlin, Germany)’, Physika Verlag, Heidelberg,
Germany.

Creighton, C. & Hanash, S. (2003), ‘Mining gene expression databases for
association rules’, Bioinformatics 19(1), 79–86.

Goethals, B. & Zaki, M. J. (2004), ‘Advances in frequent itemset mining
implementations: Report on FIMI’03’, SIGKDD Explorations 6(1), 109–
117.

Hahsler, M., Buchta, C., Grün, B. & Hornik, K. (2007), arules: Mining
Association Rules and Frequent Itemsets. R package version 0.6-0.
URL: http://CRAN.R-project.org/

Hipp, J., Güntzer, U. & Nakhaeizadeh, G. (2000), ‘Algorithms for association
rule mining — A general survey and comparison’, SIGKDD Explorations
2(2), 1–58.

Imielinski, T. & Virmani, A. (1998), Association rules... and what’s next?
towards second generation data mining systems, in ‘Proceedings of the Sec-
ond East European Symposium on Advances in Databases and Information
Systems’, Vol. 1475 of Lecture Notes In Computer Science, Springer-Verlag,
London, UK, pp. 6–25.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H. & Verkamo,
A. I. (1994), Finding interesting rules from large sets of discovered asso-
ciation rules, in N. R. Adam, B. K. Bhargava & Y. Yesha, eds, ‘Third
International Conference on Information and Knowledge Management
(CIKM’94)’, ACM Press, pp. 401–407.

Knuth, D. (1997), The Art of Computer Programming, Sorting and Searching,
Vol. 3, third edn, chapter Digital Searching, pp. 492–512.

Kohavi, R. (1996), Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid, in ‘Proceedings of the Second International Confer-
ence on Knowledge Discovery and Data Mining’, pp. 202–207.

Kohavi, R., Brodley, C., Frasca, B., Mason, L. & Zheng, Z. (2000), ‘KDD-
Cup 2000 organizers’ report: Peeling the onion’, SIGKDD Explorations
2(2), 86–98.

Luo, J. & Bridges, S. (2000), ‘Mining fuzzy association rules and fuzzy fre-
quency episodes for intrusion detection.’, International Journal of Intelli-
gent Systems 15(8), 687–703.

Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. J. (1998), UCI Repository
of Machine Learning Databases, University of California, Irvine, Dept. of
Information and Computer Sciences.
URL: http://www.ics.uci.edu/∼mlearn/MLRepository.html



15

Pasquier, N., Bastide, Y., Taouil, R. & Lakhal, L. (1999), Discovering fre-
quent closed itemsets for association rules, in ‘Proceeding of the 7th In-
ternational Conference on Database Theory, Lecture Notes In Computer
Science (LNCS 1540)’, Springer, pp. 398–416.

Piatetsky-Shapiro, G. (1991), Discovery, analysis, and presentation of strong
rules, in G. Piatetsky-Shapiro & W. J. Frawley, eds, ‘Knowledge Discovery
in Databases’, AAAI/MIT Press, Cambridge, MA.

Srikant, R., Vu, Q. & Agrawal, R. (1997), Mining association rules with item
constraints, in D. Heckerman, H. Mannila, D. Pregibon & R. Uthurusamy,
eds, ‘Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, KDD’,
AAAI Press, pp. 67–73.

Srivastava, J., Cooley, R., Deshpande, M. & Tan, P.-N. (2000), ‘Web us-
age mining: Discovery and applications of usage patterns from web data’,
SIGKDD Explorations 1(2), 12–23.

Tan, P.-N., Kumar, V. & Srivastava, J. (2004), ‘Selecting the right objective
measure for association analysis’, Information Systems 29(4), 293–313.

Zaki, M. J. (2004), ‘Mining non-redundant association rules’, Data Mining
and Knowledge Discovery 9, 223–248.


	Motivation
	Efficient selective rule generation
	Experimental results
	Application example
	Conclusion

