
Discussion of a Large-Scale Open Source Data Collection Methodology

Michael Hahsler and Stefan Koch
Department of Information Business, Vienna University of Economics and BA

{michael.hahsler|stefan.koch}@wu-wien.ac.at

Abstract

This paper discusses in detail a possible methodology
for collecting repository data on a large number of open
source software projects from a single project hosting and
community site. The process of data retrieval is described
along with the possible metrics that can be computed and
which can be used for further analyses. Example research
areas to be addressed with the available data and first
results are given. Then, both advantages and
disadvantages of the proposed methodology are discussed
together with implications for future approaches.

1. Introduction

Open source software has been a hotly debated issue in
the last years, especially following the success of several
well-known projects like Linux or the Apache Web
Server. While open source software entails several
interesting questions, including legal ones, one particular
interest lies in the associated development model. The
main ideas of this development model are described in the
seminal work of Raymond [29], ‘The Cathedral and the
Bazaar’, in which he contrasts the traditional type of
software development of a few people planning a
cathedral in splendid isolation with the new collaborative
bazaar form of open source software development. In this
collaborative form of software development, a large
number of developer-turned users come together without
monetary compensation to cooperate under a model of
rigorous peer-review and take advantage of parallel
debugging that leads to innovation and rapid advancement
in developing and evolving software products.

In order to allow for this to happen and to minimize
duplicated work, a current version of the source code of
the software needs to be accessible. To this end, frequent
releases together with software licenses that grant the
necessary rights to the users, like free redistribution,
inclusion of the source code, the possibility for
modifications and derived works are necessary. The Open
Source Definition lists a number of requirements for
specific licenses, with the most prominent example,
which is even more stringent, being the GNU General
Public License (GPL), developed by the GNU project and
advocated by the Free Software Foundation.

Increasingly, empirical studies of open source software
development and projects have been performed in the last
time. This trend is very encouraging, as it might serve to

lead any discussion of this new development paradigm
away from purely ideological debates onto a higher level
of argumentation. Several differing approaches to
collecting quantitative empirical data on open source
projects are employed. While the literature yields several
in-depth studies of a small number of projects [10],
mostly large, well-known and successful ones, large-scale
quantitative investigations going into software
development issues are scarce. Current quantitative
analyses use information provided by version-control-
systems [24,25,18], the meta-information included in
Linux Software Map entries [8], or data retrieved directly
from the source code itself [11], but the number of
projects studied remain small.

On the other hand, project hosting sites like
Sourceforge.net have been discovered as a source of data.
SourceForge.net is owned by Open Source Development
Network, Inc. which is a wholly owned subsidiary of VA
Software Corporation. The mission of SourceForge.net is
‘to enrich the open source community by providing a
centralized place for open source developers to control
and manage open source software development’. To
fulfill this mission goal, a variety of services is offered to
hosted projects, including tools for managing support,
mailing lists and discussion forums, web server space,
shell services and compile farm, and source code control.
Thus, this site aims at enabling virtual communities to
form around projects, and, by easing cross-participation
between projects, creating a single community out of
these. From this source, mostly the statistics published by
Sourceforge.net itself are currently used. For example,
Crowston and Scozzi [7] used the available data for
validating a theory for competency rallying, which
suggests factors important for the success of a project.
Hunt and Johnson [17] have analyzed the number of
downloads of projects occurring. Krishnamurthy [20]
used the available data of the 100 most active mature
projects.

In this paper we propose a methodology that automates
retrieval of public data [6] from a project hosting site
spanning a large number of open source projects both
large and small, using information stored by the available
software development and communication tools. Studying
software systems and development processes using data
from these repositories offers several advantages [6]: This
approach is very cost-effective, as no additional
instrumentation is necessary, and it does not influence the
software process under consideration. In addition,
longitudinal data is available, allowing for analyses
considering the whole project history.

2. Methodology

2.1. Data retrieval

For applying the proposed methodology,
SourceForge.net was chosen as the site to be considered.
Especially the source code control system offered, in the
form of CVS (Concurrent Versions System), a free
system which is being used extensively in the free
software community [9], was used as the main source of
information. Several works have already demonstrated
that important information about software development

can be retrieved from repositories storing information
from such systems [1,24,25,18]. For example, data
concerning the participants’ contributions to projects,
their cooperation, and the progression of projects in size
and participants over time could be analyzed.

To gather additional and more detailed information,
data from the web pages and CVS servers of the projects
hosted was retrieved. The retrieval process is depicted in
Figure 1.

As the amount of data to be retrieved was estimated to
be very high, a relational database was employed for
storage, and later analysis. The data model was based on
Koch and Schneider [18].

Figure 1. Data retrieval process

The first step was to consult the SourceForge.net
homepage that displays the number of currently hosted
projects (at the relevant date 23,000). All possible
project numbers starting by one and up to this number

were selected. The first step was to get a list of projects
which are both still hosted and have the CVS service
enabled. This was done by querying for each project (as
identified by its number) its CVS information web page

hosted at SourceForge.net, containing information
regarding CVS server name and password, if enabled.
This resulted in one HTML page retrieved per project
which was then parsed for the necessary information.
Both tasks were performed using Perl scripts (step 1),
resulting in 21,355 candidate projects with enabled CVS
service. The project titles, CVS server names and
passwords were extracted and stored. As
SourceForge.net also has a development status indicator
assigned to each project, this information was retrieved
for the projects using again Perl scripts for downloading
the relevant web pages (the summary page for each
project) and parsing them (step 3). The resulting status
was stored in the database for each project to be later
used for analysis.

As the CVS interface can only handle statements
concerning the modules of which a project is composed,
the names of the modules of each project were also
necessary. In addition, this would yield the information
which projects actively use the CVS service. Therefore,
the web page for browsing the CVS repository was
retrieved for each project in the list and parsed (step 2).
This showed that only 8,791 projects were actively
using the CVS service and thus were usable for further
analysis. Using this information together with the CVS
server name information, a Perl program was used to
generate a shell script for querying the CVS servers and
retrieving the necessary data (step 4). This was done by
first checking out the source code for each module and
then issuing the “log” command for it (which is only
possible for checked out items).

Executing this large shell script (about 110,000
statements) resulted both in the downloaded source code
and an output log file for each project (step 5). The CVS
log command produces the whole history of all files in
the module. This shows the work of the programmers on
the project by submitting (“checking in”, “committing”)
files. A file, as identified by a filename and a directory
path (which is necessary as some filenames are
duplicates, e.g. a file named “makefile” exists in several
directories) can be checked in to CVS by a programmer.
The CVS-repository then records this commit with the
changes in the lines-of-code (LOC) and further
information. This information, now contained in the log
files, was then extracted by yet another Perl script and
stored in the database (step 6). The number of lines-of-
code checked in with the first commit for each file
(„initial“) was computed from the source code itself, as
it is not recorded automatically in CVS.

Subsequent analyses were performed using queries to
the database and processing with R, a free statistics
package. Overall, information was retrieved for 8,621
projects. The download took more than one month, and
the downloaded files use about 33 GB of disk space. All

downloads and queries to the SourceForge.net servers
were supplied with ample sleeping periods so as to not
delay services for other users due to overloads.

2.2. Metrics

The first metric used is the number of lines-of-code

(LOC) added to a file. The definition of this often
disputed metric LOC [16,27] is taken from the CVS-
repository and therefore includes all types of lines-of-
code, e.g. also commentaries [9]. In addition, any LOC
changed is counted as one line-of-code added and one
line-of-code deleted. The LOC deleted are defined
analogous. The difference between the LOC added and
deleted therefore gives the change in size of a software
artifact under consideration in the corresponding time
period. These changes can be cumulated to give the size
at any moment.

The metric of commit refers to the submission of a
single file by a single programmer.

The total time spent on the project can be defined for
every programmer as the difference between the date of
his first and last commit, but as this therefore includes
all time elapsed, this measure can only give an upper
bound for actual time spent working. Therefore we will
adopt the metric of a programmer as being active in a
given period of time if he performed at least one commit
during this interval, which has been shown to be better
suited [18].

The next metric was directly taken from the
SourceForge.net repository, which has a development
indicator assigned to each project. This indicator has
seven possible values, reaching from planning, pre-
alpha, alpha, beta to production/stable and mature, and
to inactive. This indicator is assigned by the project
administrator, and need therefore not necessarily be a
correct description of the current status.

Furthermore, although quite obvious, the
participation of a given programmer in a given project,
easily extracted from the data, gives additional
information for repository level analyses.

3. Possible analyses

Several different analyses are possible using the data
retrieved. Figure 2 gives an overview of the issues that
can be addressed. We describe these issues in detail in
this section, together with some first results and related
research from literature. Three major levels of analysis
are distinguished, starting from participant level, going
up to the level of a project and its characteristics and
lastly the hosting and community site overall.

Figure 2. Overview of possible analyses

3.1. Site level

The first important characteristic of the project
hosting site overall that can be checked using the
available data is the distribution of both the assets
available (i.e., the programmers) and the resulting
outcome (i.e., commits, size and project status).
Afterwards, possible relationships between these
variables can be explored.

Analyzing the 100 most active mature projects on
Sourceforge.net, Krishnamurthy [20] showed that most
of the projects had only a small number of participants
(median of 4). Only 19 per cent had more than 10
developers and 22 per cent only had one developer.
Hunt and Johnson [17] analyzed the number of
downloads of projects. They show that the distribution
of projects according to this number is also heavily
skewed and follows a power law (or Pareto or Zipf)
distribution. This form of distribution has been
recognized in a number of fields including distribution
of incomes, word usage and web site popularities. A
power-law implies that only few instances are extremely
common, whereas most instances are extremely rare.
While there are several explanations for the occurrence
of this sort of distribution, in the case of open source
software development some communities’ increased
success, attractiveness and popularity leads to more
programmers participating, which in turn might make

the community even more successful and thus constitute
a positive feedback loop for these communities.

Regarding the output of the projects, a similar
situation could be ascertained analyzing the respective
metrics like number of commits or size in lines-of-code.
Figure 2 shows a histogram of project sizes, clearly
indicating a very skewed distribution within the site.

13000000,0

12000000,0

11000000,0

10000000,0

9000000,0

8000000,0

7000000,0

6000000,0

5000000,0

4000000,0

3000000,0

2000000,0

1000000,0

0,0

10000

8000

6000

4000

2000

0

Figure 3. Histogram of project size
More possible analyses on the repository level

pertain to the collaboration of programmers on several
projects. This includes the simple number of projects

Single Participant

• LOC, Commits
• Acitivity Patterns
• Programming Style

 Participant Level Project Level Site Level

• SW Evolution
• Usage of Patterns
• Productivity
• Effort Estimation

• Distribution of Inputs /
Outputs

• Relationship Inputs /
Outputs

• Co-Participation in
Projects

Team

• Distribution of Effort
(Inequality)

• Cooperation on Files

that programmers work on, e.g., Ghosh and Prakash [11]
have found that most of the programmers, exactly
11,500 out of the 12,700 analyzed, have only worked on
one or two projects. In the ecology considered here, an
even greater amount of 94.1 per cent worked on less
than 3 projects. The collocation of projects on a single
hosting site does therefore not lead to increased
participation in other projects on the same site. Of even
more interest seems the author clustering as proposed by
Ghosh [12], or building a graph consisting of projects as
vertices and edges representing common participants
[23]. This would allow for identification of “linchpin”
developers, sub-groups or similar phenomena using
social network analysis [22].

3.2. Project level

The prior results presented above for distribution of

inputs, i.e., programmers, and outputs lead naturally to
the assumption that both type of measures of projects
are correlated, i.e., that projects with a small number of
programmers only achieve small numbers of commits
and lines-of-code. As all data is available for these
analyses, simple correlation coefficients can be
computed.

Crowston and Scozzi [7] have found in their analysis
of the Sourceforge.net published data, that although the
number of programmers was associated with higher
levels of activity, it also coincided with less advanced
states of development. Projects having well-known
developers also show higher levels of activity, but in
addition more advanced states of development.

Another interesting aspect to explore is the evolution
of open source projects. The study of software evolution
was pioneered by the work of Lehman and Belady [2]
on the releases of the OS/360 operating system, and led
to many other works (e.g., [21]), in which the laws of
software evolution were formulated, expanded and
revised. These laws entail a continual need for
adaptation of a system, followed by increased
complexity and therefore, by applying constant
incremental effort, a decline in the average incremental
growth. Turski has modeled this as an inverse square
growth rate [32]. The first study on software evolution
in open source systems was performed by Godfrey and
Tu [13], who have analyzed the Linux operating system
kernel and found a super-linear growth rate,
contradicting the prior theory of software evolution.
They modeled the growth of lines-of-code best using a
quadratic model with number of days since version 1.0
as independent variable, but found that most of the
kernel size stemmed from the device drivers which are
relatively independent of each other. Nevertheless, if the
evolution of open source software systems would prove
to be distinctly different from those of commercial
systems, it would give an indication of major differences
in development modes and their results. The
SourceForge.net project repository offers a multitude of

projects both large and small to validate the theory of
software evolution. To do this, a model taking size in
lines-of-code as a function of days has to be computed.
For the type of model, naturally several possibilities
exist, including a simple linear and a quadratic model
(and of course models of higher order). Then the quality
of these models can be compared. The most interesting
fact to explore is whether or not the growth rate is
decreasing over time according to the laws of software
evolution. This can be checked by analyzing the second
derivate of the quadratic model (or directly using the
coefficient of the quadratic term). A negative sign would
indicate decreasing growth rate in accordance to the
laws of software evolution, but would form a
contradiction to the findings of Godfrey and Tu [13] for
the Linux operating system. In addition, it can be
explored whether there are any characteristics of
projects that lead to super-linear growth. To explain
presence or absence of super-linear growth, the projects
can be divided in two groups according to their growth
behavior (super-linear or not) and checked for
differences, e.g., in size, number of participants, or
similar measures. Preliminary analysis showed that
about 39 per cent of the projects exhibit super-linear
growth, with projects in this group in general being
larger with more participants.

Additional analysis might include verifying the
application of modern programming practices. For
example, Hahsler [14] has shown that text analysis of
commit comments can be used to uncover whether
patterns are used in a project, and, using further
inspection of other project variables, which project
characteristics lead to increased adoption.

3.3. Participant level

Most prior studies have found a distinctly skewed
distribution of effort between the participants in open
source projects. For example, Mockus et al. [25] have
shown that the top 15 of nearly 400 programmers in the
Apache project added 88 per cent of the total lines-of-
code. In the GNOME project, the top 15 out of 301
programmers were only responsible for 48 percent,
while the top 52 persons were necessary to reach 80 per
cent [18], with clustering hinting at the existence of a
still smaller group of 11 programmers within this larger
group. A similar distribution for the lines-of-code
contributed to the project was found in a community of
Linux kernel developers by Hertel et al. [15]. Also the
results of the Orbiten Free Software survey [11] are
similar, the developers up to the first decile were
responsible for 72 per cent, the second for 9 per cent of
the total code. Figure 4 shows for two projects both the
lines of perfect equality and below them the respective
Lorenz curve, based on number of commits per
programmer. The Gini coefficient, a measure of
inequality often used in economics, is defined as the
area in between the two curves. In most projects, a very

unequal distribution between the participants can be
seen (more akin to the project on the left hand side).

1,0

,8

,6

,4

,2

0,0

1,0

,8

,6

,4

,2

0,0
Figure 4. Lorenz curves for distribution of

commits within two projects

In addition to the distribution between programmers’

commits, also the relationships between other variables
of programmers’ contributions can be analyzed, which
should yield high positive correlations in the case of
commits and LOC, but might deviate in the case of time
or total number of different projects worked on.

In addition, the number of LOC added per single
checkin can be computed to uncover potential
differences in working style. Like by Koch and
Schneider [18], the number of programmers working
together on single files can also be checked to uncover
patterns of cooperation. Analyzing the contributions of
programmers over time (using several fixed time
intervals), it could be checked whether differences in
total contributions are due to different intensities of
contribution or longer time on the project.

3.4. Productivity

There are several factors in a project that might
influence the productivity within the project. As a first
idea, the distribution of effort in the development team
can be explored. The question to be answered is whether
a observed distribution (e.g., a very skewed distribution)
is a good way of organizing the work, i.e., if this form of
distribution leads to good performance. Therefore, the
situation within projects needs to be explored, defining
some measure of inequality like, for example, the Gini
coefficient described above [31].

The next possible influence on productivity in a
project is the number of active programmers. Following
the reasoning of Brooks, an increased number of people
working together will decrease productivity per person
due to exponentially increasing communication costs
[5]. Therefore, the number of programmers and the
achieved progress in each project over given time
intervals need to be analyzed. To uncover any effects an
increased number of people working together has on
productivity, the relationship to the mean number of
commits and lines-of-code added per programmer in a
period can be explored.

3.5. Effort

The main indicator for how the open source software
development model compares with the traditional,
commercial models is the effort expended. As for open
source software development not even project leaders
know how much time is expended by their participants,
as no time sheets or similar mechanisms are employed,
this effort for the software development needs to be
estimated.

Currently, several estimation models are available, all
proposed and calibrated for commercial software
development. Several of these models contain
restrictions which are not fully compatible with open
source software development. Wheeler [33] used the
basic model of COCOMO [3] in organic development
mode on the Red Hat 7.1 distribution of GNU/Linux,
and arrived at an estimation of nearly 8,000 person-
years of effort representing a value of over one billion
dollar to produce the over 30 million lines-of-code.
COCOMO uses simply lines-of-code as input and
necessitates choosing one out of three available modes
of software development. Naturally, this model can be
applied using data collected from SourceForge.net,
resulting in a mean effort per project of 18.56 person-
years (with median 2.02 person-years), summing up to a
total effort for all projects of 160,020 person-years.
COCOMO II [4] seems to offer several advantages over
its predecessor, as it allows for both increasing and
decreasing economies of scale, a prototype-oriented
software process and flexibility in the requirements. As
it takes about the same input, application is again
possible.

Another approach, the Rayleigh-Norden model [26],
starts from the main idea that any development project is
composed of a set of problems which need to be solved
by the manpower employed. The application of
manpower is governed by a learning rate linear in time,
the number of people usefully employed at any given
time is assumed to be approximately proportional to the
number of problems ready for solution at that time.
Therefore, the manpower function increases until the
point of peak manning, which as Putnam [28] has shown
is close to the deployment of the software, and then
decreases due to the exhaustion of the problem space.
The manpower function therefore represents a Rayleigh-
type curve governed by a parameter which plays an
important role in the determination of the peak
manpower. If the point of peak manning has been
reached, both the parameter for the Rayleigh-curve and
the total manpower to be expended can be computed.
Koch and Schneider [18] and Koch [19] have
demonstrated the use of this model for the GNOME
project, in which the manpower function (the number of
active developers) closely follows the model, and also
reaches peak manning at the time of the first major
release. This in-depth analysis including the
consideration of release dates is impracticable for a

whole project ecology with more than 8,000 projects.
Therefore, the point in time of peak manning and the
respective number of active programmers need to be
retrieved for each project. From this, the Rayleigh-curve
can be constructed automatically, and the total
manpower to be expended can be computed. The
Rayleigh-curve was originally developed to compute
manpower in person-years for commercial programmers
with a 40 hours week. However, since we use the
number of active open source programmers for
calculation, the result is also in “open source
programmer-years” (which use normally less than 40
hours per week). Using the average number of working
hours of open source programmers, this measure can be
converted [18,19] for comparison into full 40 hours
weeks. For example, Hertel et al. [15] report that in the
group of Linux kernel developers participating in their
survey, about 18.4 hours per week are spent on open
source development by each person. The results of the
Norden-Rayleigh model are considerably lower than
those achieved by COCOMO estimation, and give a
mean effort per project of 0.69 person-years (median
0.19 person-years) with a total effort for all hosted
projects of 5,965 person-years.

4. Discussion

Compared with other approaches currently discussed,
the main advantages of the described methodology are
that a large amount of projects can be used as input,
without human intervention. Project identification and
retrieval is performed automatically. The inclusion of
other measures besides data from a source code control
repository is possible, as demonstrated by including the
status variable retrieved from the Sourceforge.net web
pages.

Nevertheless, several problems were encountered
using the proposed methodology. First, execution of the
generated shell script for querying the different source
code control repositories of the different projects was
not automatically supervised. If the script terminated
due to whatever reason (e.g., a crash of the executing
machine) progress had to be checked in the generated
log files and the rest of the script had to be restarted
manually cutting down the script to those commands not
yet executed. A better solution would be to read the
relevant access and progress information from a
database or a file and generate all necessary shell
commands on the fly.

 The quality of the data retrieved can not be
absolutely ascertained. There might be several effects
introducing a bias to some results, for example a high
amount of checkins performed by participants for other
people might lead to increased concentration and
inequality indices. Some of these problems can be
detected and alleviated, e.g., by inspecting the checkin
comments.

Several analyses especially based on the data from
source code repositories might be automated to a much
higher degree as, for example, shown by the CVSAnalY
tool [31]. This tool also includes matching of single files
on certain types using, e.g., inspection of file extensions,
or recognizing common filenames like readme. This
might allow for identification of contributor groups that
work on different parts of the project like documentation
or translation [31].

Of special interest seems the recently proposed
GlueTheos approach [30], a modular system automating
the retrieval and analysis processes from several kinds
of repositories including source code control system,
mailing lists, etc. What seems to be missing is support
for identification and retrieval of data on a large number
of projects. Currently, setup needs to determine the
starting points manually, like for instance the address of
the relevant source code repository. Thus setup needs to
be performed for each project individually, which limits
its capabilities. Therefore we propose to extend the
approach by including a first step before data retrieval,
termed identification, to allow for automated
identification of a large number of projects and their
retrieval starting points.

5. Conclusions

In this paper we proposed a methodology for
identifying a large number of open source software
projects from a single project hosting and community
site and automatically retrieving their data from several
public sources provided by the site. We described which
metrics can be derived from this data, and discussed
what analyses are possible based on the metrics. We
demonstrated the applicability of the methodology by
giving some examples from SourceForge.net. This has
shown that indeed a large number of research areas can
be addressed using the methodology. Advantages of
applying this approach include the cost-effectiveness of
automated data retrieval, absence of influence on the
software process studied, and, due to the availability of
historical data, the possibility of longitudinal analyses.
Therefore, several insights into the inner workings,
coordination and evolution of open source software
communities can be gained from publicly available data
at low cost.

Both, advantages and disadvantages, of the proposed
methodology have been discussed. Other recently
proposed approaches offer distinct advantages in several
areas, but seem to lack support for automated project
identification. Future work should be done on
combining the advantages of several of these
approaches, maybe by using the flexible architecture
provided by GlueTheos.

6. References

[1] Atkins, D., Ball, T., Graves, T. and Mockus, A., ‘Using
Version Control Data to Evaluate the Impact of Software
Tools’, in Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, 1999, pp. 324-333.

[2] Belady, L.A. and Lehman, M.M., ‘A model of large
program development’, IBM Systems Journal 15(3): pp. 225-
252, 1976.

[3] Boehm, B.W., Software Engineering Economics.
Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[4] Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark,
B.K., Horowitz, E., Madachy, R., Reifer, D.J. and Steece, B.,
Software Cost Estimation with COCOMO II. Upper Saddle
River, New Jersey: Prentice Hall, 2000.

[5] Brooks jr., F.P., The Mythical Man-Month: Essays on
Software Engineering. Anniversary ed., Reading,
Massachusetts: Addison-Wesley, 1995.

[6] Cook, J.E., Votta, L.G. and Wolf A.L., ‘Cost-effective
analysis of in-place software processes’, IEEE Transactions on
Software Engineering 24(8): pp. 650-663, 1998.

[7] Crowston, K. and Scozzi B., ‘Open source software
projects as virtual organizations: Competency rallying for
software development’, IEE Proceedings - Software
Engineering 149(1): pp. 3-17, 2002.

[8] Dempsey, Bert J., Weiss, Debra, Jones, Paul, and
Greenberg, Jane, ‘Who is an open source software
developer?’, Communications of the ACM 45(2): pp. 67-72,
2002.

[9] Fogel, K., Open Source Development with CVS. Scottsdale,
Arizona: CoriolisOpen Press, 1999.

[10] Gallivan, Michael J., ‘Striking a balance between trust
and control in a virtual organization: A content analysis of
open source software case studies’, Information Systems
Journal 11(4): pp. 277-304, 2002.

[11] Ghosh, R. and Prakash, V.V., ‘The Orbiten Free Software
Survey’, First Monday 5(7), 2000.

[12] Ghosh, R., ‘Clustering and dependencies in free/open
source software development: Methodology and tools’, First
Monday 8(4), 2003.

[13] Godfrey, M.W. and Tu, Q. ‘Evolution in Open Source
software: A case study’, in Proceedings of the International
Conference on Software Maintenance (ICSM 2000), San Jose,
California, 2000, pp. 131-142.

[14] Hahsler, Michael “A Quantitative Study of the Adoption
of Design Patterns by Open Source Software Developers”, in:
Koch, Stefan (ed.) Free/Open Source Software Development,
IGP, Hershey, PA, 2004.

[15] Hertel, Guido, Niedner, Sven, and Hermann, Stefanie,
‘Motivation of software developers in open source projects:

An internet-based survey of contributors to the Linux kernel’,
Research Policy 32(7): pp. 1159-1177, 2003.

[16] Humphrey, W.S., A Discipline for Software Engineering.
Reading, Massachusetts: Addison-Wesley, 1995.

[17] Hunt, Francis and Johnson, Paul, ‘On the pareto
distribution of sourceforge projects’, in Proceedings of the
Open Source Software Development Workshop, Newcastle,
UK, 2002, pp. 122-129.

[18] Koch, Stefan and Schneider, Georg, ‘Effort, cooperation
and coordination in an open source software project: Gnome’,
Information Systems Journal 12(1): pp. 27-42, 2002.

[19] Koch, Stefan, ‘Effort Estimation in Open Source Software
Development: A Case Study’, in Proceedings of the 2003
IRMA International Conference, Philadelphia, PA, 2003, pp.
859-861.

[20] Krishnamurthy, Sandeep, ‘Cave or community? an
empirical investigation of 100 mature open source projects’,
First Monday 7(6), 2002.

[21] Lehman, M.M. and Ramil, J.F., ‘Rules and Tools for
Software Evolution Planning and Management’, Annals of
Software Engineering 11: pp. 15-44, 2001.

[22] Luis López, Jesús M. González-Barahona and Gregorio
Robles, “Applying Social Network Analysis to the Information
in CVS Repositories”, in Proceedings of the Mining Software
Repositories Workshop. 26th International Conference on
Software Engineering (Edinburgh, Scotland), 2004.

[23] Madey, G,. Freeh, V. and Tynan, R.,‘The Open Source
Software Development Phenomenon: An Analysis based on
Social Network Theory’, in Proceedings of the Americas
Conference on Information Systems, Dallas, Texas, 2002, pp.
1806-1813.

[24] Mockus, A., Fielding, R. and Herbsleb, J., ‘A Case Study
of Open Source Software Development: The Apache Server’,
in Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland, 2000, pp. 263-272.

[25] Mockus, A., Fielding, R. and Herbsleb, J., ‘Two case
studies of open source software development: Apache and
Mozilla’, ACM Transactions on Software Engineering and
Methodology 11(3): pp. 309-346, 2002.

[26] Norden, P.V., ‘On the anatomy of development projects’,
IRE Transactions on Engineering Management 7(1): pp. 34-
42, 1960.

[27] Park, R.E., Software size measurement: A framework for
counting source statements. Technical Report CMU/SEI-92-
TR-20, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1992.

[28] Putnam, L.H., ‘A general empirical solution to the macro
software sizing and estimating problem’, IEEE Transactions
on Software Engineering 4(4): pp. 345-361, 1978.

[29] Raymond, E.S., The Cathedral and the Bazaar.
Cambridge, Massachusetts: O’Reilly & Associates, 1999.

[30] Gregorio Robles, Jesús M. González-Barahona and
Rishab Aiyer Ghosh, “GlueTheos: Automating the Retrieval
and Analysis of Data from Publicly Available Repositories”, in
Proceedings of the Mining Software Repositories Workshop.
26th International Conference on Software Engineering
(Edinburgh, Scotland). 2004.

[31] Gregorio Robles, Stefan Koch and Jesús M. González-
Barahona, “Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool”, in
Proceedings of the 2nd ICSE Workshop on Remote Analysis
and Measurement of Software Systems (RAMSS '04). 26th

International Conference on Software Engineering (Edinburgh,
Scotland), 2004.

[32] Turski, W.M. ‘Reference Model for Smooth Growth of
Software Systems’, IEEE Transactions on Software
Engineering 22(8): pp. 599-600, 1996.

[33] Wheeler, David A. ‘More Than a Gigabuck: Estimating
GNU/Linux's Size - Version 1.07’,
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html,
accessed Aug. 4., 2003.

