
Clustering Large Datasets using Data Stream
Clustering Techniques

Matthew Bolaños1, John Forrest2, and Michael Hahsler1

1 Southern Methodist University, Dallas, Texas, USA.
2 Microsoft, Redmond, Washington, USA.

Abstract. Unsupervised identification of groups in large data sets is important for many ma-
chine learning and knowledge discovery applications. Conventional clustering approaches (k-
means, hierarchical clustering, etc.) typically do not scale well for very large data sets. In
recent years, data stream clustering algorithms have been proposed which can deal efficiently
with potentially unbounded streams of data.

This paper is the first to investigate the use of data stream clustering algorithms as light-
weight alternatives to conventional algorithms on large non-streaming data. We will discuss
important issue including order dependence and report the results of an initial study using
several synthetic and real-world data sets.

1 Introduction

Clustering very large data sets is important for may applications ranging from finding
groups of users with common interests in web usage data to organizing organisms
given genetic sequence information. The data are often not only so large that they do
not fit into main memory, but they even have to be stored in a distributed manner.
Conventional clustering algorithms typically require repeated access to all the data
which is very expensive in a scenario with very large data.

Data stream clustering has become an important field of research in recent years.
A data stream is an ordered and potentially unbounded sequence of objects (e.g., data
points representing sensor readings). Data stream algorithms have been developed in
order to process large volumes of data in an efficient manner using a single pass
over the data while having only minimal storage overhead requirements. Although
these algorithms are designed for data streams, they obviously can also be used on
non-streaming data.

In this paper we investigate how to use data stream clustering techniques on large,
non-streaming data. The paper is organized as follows. We introduce the problems of
clustering large data sets and data stream clustering in Sections 2 and 3, respectively.
Section 4 discusses issues of the application of data stream clustering algorithms to
non-streaming data. We present results of first experiments in Section 5 and conclude
with Section 6.



2 M. Bolaños, J. Forrest and M. Hahsler

2 Clustering large data sets

Clustering groups objects such that objects in a group are more similar to each other
than to the objects in a different group (Kaufman and Rousseeuw (1990)). Formally
clustering can be defined as:

Definition 1 (Clustering). Partition a set of objects O = {o1,o2, . . . ,on} into a set of
clusters C = {C1,C2, . . . ,Ck,Cε}, where k is the number of clusters and Cε contains
all objects not assigned to a cluster.

We restrict clustering here to hard (non-fuzzy) clustering where Ci ∩C j = /0 for
all i, j ∈ {1,2, . . . ,k,ε} and i 6= j. Unassigned objects are often considered noise,
however, many algorithms cannot leave objects unassigned (i.e., Cε = /0). The ability
to deal with noise becomes more important in very large data sets where manually
removing noise before clustering is not practical. The number k is typically user-
defined, but might also be determined by the clustering algorithm. In this paper,
we assume that the objects are embedded in a d-dimensional metric space (o ∈ Rd)
where dissimilarity can be measured using Euclidean distance. We do not deal with
the problem of finding the optimal number of clusters, but assume that a reasonable
estimate for k is available.

The most popular conventional clustering methods are k-means type clustering,
hierarchical clustering and density-based clustering. All these methods have in com-
mon that they do not scale well for very large data sets since they either need several
passes over the data or they create data structures that do not scale linearly with the
number of objects. We refer the reader to the popular book by Jain and Dubes (1988)
for details about the various clustering methods.

To cluster large data sets, researchers have developed parallel computing ap-
proaches, most notably using Google’s MapReduce framework (e.g., for k-means
see Zhao et al. (2009)). On the other hand, researchers started earlier to reduce the
data size by sampling. For example, CLARA (Kaufman and Rousseeuw (1990)) uses
sampling and then applies Partitioning Around Medoids (PAM) on the samples and
returns the best clustering. Another algorithm, BIRCH (Zhang et al. (1996)), builds
a height balanced tree (also known as a cluster feature or CF tree) in a single pass
over the data. The tree stores information about subclusters in its leaf nodes. During
clustering, each data point is either added to an existing leaf node or a new node is
created. Some reorganization is applied to keep the tree at a manageable size. After
all data points are added to the CF tree, the user is presented with a list of subclus-
ters. BIRCH was developed by the data mining community and resembles in many
ways the techniques used in data stream clustering which we will discuss in the next
section.

3 Data stream clustering

We first define data stream since data stream clustering operates on data streams.



Clustering Large Datasets 3

Definition 2 (Data stream). A data stream is an ordered and potentially unbounded
sequence of objects S = 〈o1,o2,o3, . . .〉.

Working with data streams imposes several restrictions on algorithms. It is im-
practical to permanently store all objects in the stream which implies that there is
limited time to process each object and repeated access to all objects is not possible.

Over the past 10 years a number of data stream clustering algorithms have been
developed. For simplicity, we will restrict the discussion in this paper to algorithms
based on micro-clusters (see Gama (2010)). Most data stream clustering algorithms
use a two stage online/offline approach.

Definition 3 (Online stage). Summarize the objects in stream S in real-time (i.e.,
in a single pass over the data) by a set of k′ micro-clusters M = {m1,m2, . . . ,mk′}
where mi with i = {1,2, . . . ,k′} represents a micro-cluster in a way such that the
center, weight, and possibly additional statistics can be computed.

When the user requires a clustering, the offline stage reclusters the micro-clusters to
form a final (macro) clustering.

Definition 4 (Offline stage). Use the k′ micro-clusters in M as pseudo-objects to
produce a set C of k� k′ final clusters using clustering defined in Definition 1.

Note that while k often is specified by the user, k′ is not fixed and may grow
and shrink during the clustering process. Micro-clusters are typically represented
as a center and each new object is assigned to its closest (in terms of a proximity
measure) micro-cluster. Some algorithms also use a grid and micro-clusters represent
non-empty grid-cells. If a new data point cannot be assigned to an existing micro-
cluster, typically a new micro-cluster is created. The algorithm may also do some
housekeeping (merging or deleting micro-clusters) to keep the number of micro-
clusters at a manageable size.

Since the online component only passes over the data once and the offline compo-
nent operates on a drastically reduced data set which typically fits into main memory,
data stream clustering algorithms can be used efficiently on very large, disk-resident
data. For a comprehensive treatment of data stream clustering algorithms includ-
ing some single-pass versions of k-means and related issues, we refer the interested
reader to the books by Aggarwal (2007) and Gama (2010).

4 Data stream clustering of non-streaming data

Applying a data stream clustering algorithm to non-streaming data is straightforward.
To convert the set of objects O into a stream S , we simply take one object at a time
from O and hand it to the clustering algorithm. However, there are several important
issues to consider.

A crucial aspect of data streams is that the objects are temporally ordered. Many
data streams are considered to change over time, i.e., clusters move, disappear or
new clusters may form. Therefore, data stream algorithms incorporate methods to



4 M. Bolaños, J. Forrest and M. Hahsler

put more weight on current data and forget outdated data. This is typically done
by removing micro-clusters which were not updated for a while (e.g., in CluStream;
Aggarwal et al. (2003)) or using a time-dependent exponentially decaying weight for
the influence of an object (most algorithms). For large, stationary data sets, where
order has no temporal meaning and is often arbitrary, this approach would mean
that we put more weight on data towards the end of the data set while loosing the
information at the beginning. Some data stream clustering algorithms allow us to
disable this feature, e.g., using a very large horizon parameter for CluStream forces
the algorithm not to forget micro-clusters and instead merge similar clusters. For
many other algorithms, the decay rate can be set to 0 or close to 0. For example in
DenStream (Cao et al. (2006)) a value close to 0 reduces the influence of the order
in the data. However, setting it to 0 makes the algorithm unusable since removing
small micro-clusters representing noise or outliers depends on the decay mechanism.
It is very important to established if and how this type of order dependence can
be removed or reduced before applying a data stream clustering algorithm to non-
streaming data.

Since data stream clustering algorithms use a single pass over the data, the result-
ing clustering may still be order dependent. This happens for algorithms, where the
location of the created micro-clusters is different if objects are added in a different
order. However, this type of order dependency typically only effects micro-cluster
placement slightly and our results below indicate that after reclustering, the final
clustering is only effected minimally.

Another issue is that data stream clustering algorithms dispose of the objects
after they are absorbed by a micro-cluster and since the data stream is expected to
be unbounded, not even the cluster assignments of the objects are retained. The only
information that is available after reclustering is the set of micro-clusters M and
the mapping of micro-clusters onto final clusters fmacro : M 7→ C . In order to infer
the mapping of objects in O to cluster labels, we find for each object o the closest
micro-cluster and then use fmacro to retrieve the cluster label in C . Note that this
approach works not only for reclustering that produces spherical clusters but also
for reclustering that produces arbitrarily shaped clusters (e.g., with single-linkage
hierarchical clustering or density based clustering).

5 Comparing different clustering methods

To perform our experiments we use stream,1 a R-extension currently under devel-
opment which provides an intuitive interface for experimenting with data streams
and data stream algorithms. It includes the generation of synthetic data, reading of
disk-resident data in a streaming fashion, and a growing set of data stream mining
algorithms (including some from the MOA framework by Bifet et al. (2010)). In this
first study, we only evaluate sampling and the online component of three of the more
popular clustering methods suitable for data streams.

1 stream is available at http://R-Forge.R-Project.org/projects/
clusterds/



Clustering Large Datasets 5

Table 1. Data sets

Dataset Number of objects Dimensions Clusters Noise

Mixture of Gaussians 100,000 d∗ k∗ n%∗

Covertype 581,012 10 7 unknown
16S rRNA 406,997 64 110 unknown

∗ Values correspond with the data sets’ names.

• Reservoir Sampling (Vitter (1985))
• BIRCH (Zhang et al. (1996))
• CluStream (Aggarwal et al. (2003))
• DenStream (Cao et al. (2006))

For evaluation, we use the data sets shown in Table 1. We use several mixture
of Gaussians data sets with k clusters in a d-dimensional hypercube created with
randomly generated centers and covariance matrices similar to the method suggested
by Jain and Dubes (1988).2 Some clusters typically overlap. For one set we add
n= 20% noise in the form of objects uniformly distributed over the whole data space.

The Covertype data set3 contains remote sensing data from the Roosevelt Na-
tional Forest of northern Colorado for 7 different forest cover types. We use for
clustering the 10 quantitative variables.

The 16S rRNA data set contains the 3-gram count for the more than 400,000
16S rRNA sequences currently available for bacteria in the Greengenes database.4

16S sequences are about 1500 letters long and we obtain 64 different 3-gram counts
for the 4 letters in the RNA alphabet. Since these sequences are mainly used for clas-
sification, we use the phylum, a phylogenetic rank right below kingdom, as ground
truth.

All data sets come from a stationary distribution and the order in the data is
arbitrary making them suitable for evaluating clustering of non-streaming data.

5.1 Evaluation method

We cluster each data set with each data stream clustering method. We reduce decay
and forgetting in the algorithms by using appropriate parameters (horizon = 106 for
CluStream and λ = 10−6 for DenStream). Then we tune each algorithm for each
data set to generate approximately 1000 micro-clusters to make the results better
comparable. Finally, we recluster each data stream clustering algorithm’s result using
weighted k-means using the known number of clusters for k.

2 Created with the default settings of function DSD Gaussian Static() in stream.
3 Obtained from UCI Machine Learning Repository at http://archive.ics.uci.
edu/ml/datasets/Covertype

4 Obtained from Greengenes at http://greengenes.lbl.gov/Download/
Sequence_Data/Fasta_data_files/current_GREENGENES_gg16S_
unaligned.fasta.gz



6 M. Bolaños, J. Forrest and M. Hahsler

●

●

●
●

●●

●
●

●

●

●

●● ●
●

●

● ●●
●

●

●
●

● ●

●●

●

●●

●

●●

●● ●

●

●

●

●
●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●●

●

●●

●

● ●
●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

● ●
●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●●
● ●●

●

●

●

●● ●

●

●●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●
●●

●
●

●

●● ●

●
●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling 1%

●

●

●
●

●●

●
●

●

●

●

●● ●
●

●

● ●●
●

●

●
●

● ●

●●

●

●●

●

●●

●● ●

●

●

●

●
●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●●

●

●●

●

● ●
●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

● ●
●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●●
● ●●

●

●

●

●● ●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BIRCH

●

●

●
●

●●

●
●

●

●

●

●● ●
●

●

● ●●
●

●

●
●

● ●

●●

●

●●

●

●●

●● ●

●

●

●

●
●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●●

●

●●

●

● ●
●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

● ●
●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●●
● ●●

●

●

●

●● ●

●

●●

●● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CluStream

●

●

●
●

●●

●
●

●

●

●

●● ●
●

●

● ●●
●

●

●
●

● ●

●●

●

●●

●

●●

●● ●

●

●

●

●
●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●●

●

●●

●

● ●
●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

● ●
●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●●
● ●●

●

●

●

●● ●

●

●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DenStream

Fig. 1. About 100 micro-clusters placed by different algorithms on a mixture of k = 5 Gaus-
sians in d = 2 (shown in gray) with 5% noise. Micro-cluster weights are represented by circle
size.

We chose data sets with available ground truth in order to be able to use an exter-
nal evaluation measure. Studies showed that the corrected Rand index (Hubert and
Arabie (1985)) is an appropriate external measure to compare partitions for cluster-
ing static data (Milligan and Cooper (1986)). It compares the partition produced via
clustering with the partition given by the ground truth using the Rand index (a mea-
sure of agreement between partitions) corrected for expected random agreements.
The index is in the interval [−1,1], where 0 indicates that the found agreements can
be entirely explained by chance and the higher the index, the better the agreement.
The index is also appropriate to compare the quality of different partitions given the
ground truth (Jain and Dubes (1988)) as is done in this paper.

5.2 Results

First, we take a look at how different algorithms place micro-clusters since this gives
us a better idea of how well reclustering will work. In Figure 1 we apply all four
algorithms on a simple mixture of Gaussians data set with 10,000 data points and
5% noise. We either set or tuned all algorithms to produce about 100 micro-clusters.
Reservoir sampling (1%) in Figure 1 concentrates on the dense areas and only se-
lects few noise points. However, we can see that some quite dense areas do not have



Clustering Large Datasets 7

A
dj

us
te

d 
R

an
d 

In
de

x

0.
0

0.
4

0.
8

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

k3d2n00
A

dj
us

te
d 

R
an

d 
In

de
x

0.
0

0.
4

0.
8

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

k3d2n20

A
dj

us
te

d 
R

an
d 

In
de

x

0.
0

0.
4

0.
8

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

k10d2n00

A
dj

us
te

d 
R

an
d 

In
de

x

0.
0

0.
4

0.
8

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

k10d10n00

A
dj

us
te

d 
R

an
d 

In
de

x

0.
00

0.
10

0.
20

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

Covertype

A
dj

us
te

d 
R

an
d 

In
de

x

0.
00

0.
10

0.
20

k−
m

ea
ns

Sam
ple

BIR
CH

CluS
tre

am

Den
Stre

am

16S rRNA

Fig. 2. Corrected Rand index for different data sets with k-means reclustering.

a representative. Also, no weights are available for sampling. BIRCH places micro-
clusters relatively evenly with heavier micro-clusters in denser areas. Since BIRCH
tries to represent all objects, noise creates many very light micro-clusters. CluStream
produces results very similar to BIRCH. DenStream tends to create a single heavy
cluster for a dense area, but often micro-cluster compete for larger dense areas re-
sulting in a cloud of many very light clusters. A big difference to the other methods
is that DenStream is able to suppress noise very well.

Next, we look at the order dependence of each method. We use the same data
set as above, but randomly reorder the data 10 times, run the four algorithms on it
and then recluster with weighted k-means and k = 5. We assign the 10,000 objects
to the found clusters using the method discussed above in Section 4 and then com-
pare the assignments for the 10 different orders (45 comparisons) using the corrected
Rand index. The average corrected Rank index is relatively high with .74 (sampling),
.85 (BIRCH), 0.81 (CluStream) and 0.79 (DenStream). Sampling has the lowest in-
dex, however, this is not caused by the order of the data since random sampling
is order independent, but by the variation caused by choosing random subsets. The
higher index for the other methods indicates that, using appropriate parameters, order
dependence is below the variability of a 1% sample.

Finally, we cluster and recluster the artificial and real data sets and report the cor-
rected Rank index between the clustering and the known ground truth in Figure 2.
We replicate each experiment for the artificial data 10 times and report the aver-
age corrected Rand index. For comparison, the result of k-means on the whole data
set is reported. BIRCH performs extraordinarily well on the artificial data sets with
low dimensionality where it even outperforming directly using k-means. For noisy
data (k3d2n20), we see that all algorithms but DenStream degrade slightly (from
k3d2n00). This can be explained by the fact, that DenStream has built-in capability
to remove outliers. For higher-dimensional data (k10d10n00 and the real data sets)
CluStream performs very favorably.

6 Conclusion

The experiments in this paper indicate a potential for using data stream clustering
techniques for efficiently reducing large data sets to a size manageable by conven-
tional clustering algorithms. However, it is important to carefully analyze the algo-



8 M. Bolaños, J. Forrest and M. Hahsler

rithm and remove or reduce the order dependency inherent in data stream clustering
algorithms. More thorough experiments on how different methods perform is needed.
However, the authors hope that this paper will spark more research in this area, lead-
ing to new algorithms dedicated to clustering large, non-streaming data.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation as a research
experience for undergraduates (REU) under contract number IIS-0948893 and by the
National Institutes of Health under contract number R21HG005912.

References

AGGARWAL, C. (2007): Data Streams: Models and Algorithms, volume 31 of Ad-
vances in Database Systems. Springer, New York, NY.

AGGARWAL, C. C., HAN, J., WANG, J. and YU, P. S. (2003): A framework for
clustering evolving data streams. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB ’03). 81–92.

BIFET, A., HOLMES, G., KIRKBY, R. and PFAHRINGER, B. (2010): MOA: Mas-
sive online analysis. Journal of Machine Learning Research, 99, 1601–1604.

CAO, F., ESTER, M., QIAN, W. and ZHOU, A. (2006): Density-based clustering
over an evolving data stream with noise. In: Proceedings of the 2006 SIAM Inter-
national Conference on Data Mining. SIAM, 328–339.

GAMA, J. A. (2010): Knowledge Discovery from Data Streams. Chapman &
Hall/CRC, Boca Raton, FL, 1st edition.

HUBERT, L. and ARABIE, P. (1985): Comparing partitions. Journal of Classifica-
tion, 2(1), 193–218.

JAIN, A. K. and DUBES, R. C. (1988): Algorithms for clustering data. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

KAUFMAN, L. and ROUSSEEUW, P. J. (1990): Finding groups in data: an intro-
duction to cluster analysis. John Wiley and Sons, New York.

MILLIGAN, G. W. and COOPER, M. C. (1986): A study of the comparability of ex-
ternal criteria for hierarchical cluster analysis. Multivariate Behavioral Research,
21(4), 441–458.

VITTER, J. S. (1985): Random sampling with a reservoir. ACM Transactions on
Mathematical Software, 11(1), 37–57.

ZHANG, T., RAMAKRISHNAN, R. and LIVNY, M. (1996): BIRCH: An efficient
data clustering method for very large databases. In: Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data. ACM, 103–114.

ZHAO, W., MA, H. and HE, Q. (2009): Parallel k-means clustering based on MapRe-
duce. In: Proceedings of the 1st International Conference on Cloud Computing.
Springer-Verlag, Berlin, Heidelberg, CloudCom ’09, 674–679.


