
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 1

Clustering Data Streams Based on Shared
Density Between Micro-Clusters

Michael Hahsler, Member, IEEE, and Matthew Bolaños

Abstract—As more and more applications produce streaming data, clustering data streams has become an important technique for
data and knowledge engineering. A typical approach is to summarize the data stream in real-time with an online process into a large
number of so called micro-clusters. Micro-clusters represent local density estimates by aggregating the information of many data points
in a defined area. On demand, a (modified) conventional clustering algorithm is used in a second offline step to recluster the
micro-clusters into larger final clusters. For reclustering, the centers of the micro-clusters are used as pseudo points with the density
estimates used as their weights. However, information about density in the area between micro-clusters is not preserved in the online
process and reclustering is based on possibly inaccurate assumptions about the distribution of data within and between micro-clusters
(e.g., uniform or Gaussian).
This paper describes DBSTREAM, the first micro-cluster-based online clustering component that explicitly captures the density
between micro-clusters via a shared density graph. The density information in this graph is then exploited for reclustering based on
actual density between adjacent micro-clusters. We discuss the space and time complexity of maintaining the shared density graph.
Experiments on a wide range of synthetic and real data sets highlight that using shared density improves clustering quality over other
popular data stream clustering methods which require the creation of a larger number of smaller micro-clusters to achieve comparable
results.

Index Terms—Data mining, data stream clustering, density-based clustering.

F

1 INTRODUCTION

C LUSTERING data streams [1], [2], [3], [4] has become an
important technique for data and knowledge engineer-

ing. A data stream is an ordered and potentially unbounded
sequence of data points. Such streams of constantly arriving
data are generated for many types of applications and
include GPS data from smart phones, web click-stream
data, computer network monitoring data, telecommuni-
cation connection data, readings from sensor nets, stock
quotes, etc.

Data stream clustering is typically done as a two-stage
process with an online part which summarizes the data into
many micro-clusters or grid cells and then, in an offline
process, these micro-clusters (cells) are reclustered/merged
into a smaller number of final clusters. Since the reclus-
tering is an offline process and thus not time critical, it is
typically not discussed in detail in papers about new data
stream clustering algorithms. Most papers suggest to use
an (sometimes slightly modified) existing conventional clus-
tering algorithm (e.g., weighted k-means in CluStream [5])
where the micro-clusters are used as pseudo points. Another
approach used in DenStream [6] is to use reachability where
all micro-clusters which are less then a given distance from
each other are linked together to form clusters. Grid-based
algorithms typically merge adjacent dense grid cells to form
larger clusters (see, e.g., the original version of D-Stream [7]
and MR-Stream, [8]).

Current reclustering approaches completely ignore the

• M. Hahsler is with the Department of Engineering Management, Infor-
mation, and Systems, Southern Methodist University, Dallas, TX 75226.
E-mail: mhahsler@lyle.smu.edu

• M. Bolaños is with Research Now, Plano, TX 75024.

Manuscript received April 19, 20xx; revised September 17, 20xx.

data density in the area between the micro-clusters (grid
cells) and thus might join micro-clusters (cells) which are
close together but at the same time separated by a small area
of low density. To address this problem, Tu and Chen [9]
introduced an extension to the grid-based D-Stream al-
gorithm [7] based on the concept of attraction between
adjacent grids cells and showed its effectiveness.

In this paper, we develop and evaluate a new method
to address this problem for micro-cluster-based algorithms.
We introduce the concept of a shared density graph which
explicitly captures the density of the original data between
micro-clusters during clustering and then show how the
graph can be used for reclustering micro-clusters. This is
a novel approach since instead on relying on assumptions
about the distribution of data points assigned to a micro-
cluster (often a Gaussian distribution around a center), it
estimates the density in the shared region between micro-
clusters directly from the data. To the best of our knowledge,
this paper is the first to propose and investigate using a
shared-density-based reclustering approach for data stream
clustering.

The paper is organized as follows. After a brief discus-
sion of the background in Section 2, we present in Section 3
the shared density graph and the algorithms used to capture
the density between micro-clusters in the online component.
In Section 4 we describe the reclustering approach which is
based on clustering or finding connected components in the
shared density graph. In Section 5 we discuss the computa-
tional complexity of maintaining the shared density graph.
Section 6 contains detailed experiments with synthetic and
real data sets. We conclude the paper with Section 7.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 2

2 BACKGROUND

Density-based clustering is a well-researched area and we
can only give a very brief overview here. DBSCAN [10] and
several of its improvements can be seen as the prototypical
density-based clustering approach. DBSCAN estimates the
density around each data point by counting the number
of points in a user-specified eps-neighborhood and applies
user-specified thresholds to identify core, border and noise
points. In a second step, core points are joined into a
cluster if they are density-reachable (i.e., there is a chain
of core points where one falls inside the eps-neighborhood
of the next). Finally, border points are assigned to clusters.
Other approaches are based on kernel density estimation
(e.g., DENCLUE [11]) or use shared nearest neighbors (e.g.,
SNN [12], CHAMELEON [13]).

However, these algorithms were not developed with
data streams in mind. A data stream is an ordered and
potentially unbounded sequence of data points X =
〈x1,x2,x3, . . .〉. It is not possible to permanently store all
the data in the stream which implies that repeated random
access to the data is infeasible. Also, data streams exhibit
concept drift over time where the position and/or shape of
clusters changes, and new clusters may appear or existing
clusters disappear. This makes the application of existing
clustering algorithms difficult. Data stream clustering al-
gorithms limit data access to a single pass over the data
and adapt to concept drift. Over the last 10 years many
algorithms for clustering data streams have been proposed
[5], [6], [8], [9], [14], [15], [16], [17], [18], [19], [20]. Most data
stream clustering algorithms use a two-stage online/offline
approach [4]:

1) Online: Summarize the data using a set of k′ micro-
clusters organized in a space-efficient data structure
which also enables fast lookup. Micro-clusters are
representatives for sets of similar data points and
are created using a single pass over the data (typ-
ically in real time when the data stream arrives).
Micro-clusters are typically represented by cluster
centers and additional statistics as weight (density)
and dispersion (variance). Each new data point
is assigned to its closest (in terms of a similarity
function) micro-cluster. Some algorithms use a grid
instead and non-empty grid cells represent micro-
clusters (e.g., [8], [9]). If a new data point cannot be
assigned to an existing micro-cluster, a new micro-
cluster is created. The algorithm might also perform
some housekeeping (merging or deleting micro-
clusters) to keep the number of micro-clusters at a
manageable size or to remove noise or information
outdated due to concept drift.

2) Offline: When the user or the application requires a
clustering, the k′ micro-clusters are reclustered into
k (k � k′) final clusters sometimes referred to as
macro-clusters. Since the offline part is usually not
regarded time critical, most researchers only state
that they use a conventional clustering algorithm
(typically k-means or a variation of DBSCAN [10])
by regarding the micro-cluster center positions as
pseudo-points. The algorithms are often modified to
take also the weight of micro-clusters into account.

MC1
MC2

d

Area of low density

r

g

1 2

3 4 5

6

(a) Micro-cluster based (b) Grid based

Fig. 1. Problem with reclustering when dense areas are separated by
small areas of low density with (a) micro clusters and (b) grid cells.

Reclustering methods based solely on micro-clusters
only take closeness of the micro-clusters into account. This
makes it likely that two micro-clusters which are close to
each other, but separated by an area of low density still
will be merged into a cluster. Information about the density
between micro-clusters is not available since the information
does not get recorded in the online step and the original
data points are no longer available. Figure 1(a) illustrates
the problem where the micro-clusters MC1 and MC2 will be
merged as long as their distance d is low. This is even true
when density-based clustering methods (e.g., DBSCAN) are
used in the offline reclustering step, since the reclustering
is still exclusively based on the micro-cluster centers and
weights.

Several density-based approaches have been proposed
for data-stream clustering. Density-based data stream clus-
tering algorithms like D-Stream [7] and MR-Stream [8] use
the idea of density estimation in grid cells in the online step.
In the reclustering step these algorithms group adjacent
dense grid cells into clusters. However, Tu and Chen [9]
show that this leads to a problem when the data points
within each cell are not uniformly distributed and two
dense cells are separated by a small area of low density.
Figure 1(b) illustrates this problem where the grid cells 1
through 6 are merged because 3 and 4 are adjacent ignoring
the area of low density separating them. This problem can
be reduced by using a finer grid, however this comes at high
computational cost. MR-Stream [8] approaches this problem
by dynamically creating grids at multiple resolutions using
a quadtree. LeaDen-Stream [20] addresses the same problem
by introducing the concept of representing a MC by multiple
mini-micro leaders and uses this finer representation for
reclustering.

For non-streaming clustering, CHAMELEON [13] pro-
poses a solution to the problem by using both closeness
and interconnectivity for clustering. An extension to D-
Stream [9] implements this concept for data stream clus-
tering in the form of defining attraction between grid cells
as a measure of interconnectivity. Attraction information is
collected during the online clustering step. For each data
point, that is added to a grid cell, a hypercube of a user-
specified size is created and for each adjacent grid the
fraction of the hypercube’s volume intersecting with that
grid cell is recorded as the attraction between the point and
that grid cell. The attraction between a grid cell and one of
its neighbors is defined as the sum of the attractions of all its
assigned points with the neighboring cell. For reclustering,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 3

adjacent dense grid cells are only merged if the attraction
between the cells is high enough. Attraction measures the
closeness of data points in one cell to neighboring cells and
not density. It is also not directly applicable to general micro-
clusters. In the following we will develop a technique to
obtain density-based connectivity estimated between micro-
clusters directly from the data.

3 THE DBSTREAM ONLINE COMPONENT

Typical micro-cluster-based data stream clustering algo-
rithms retain the density within each micro-cluster (MC) as
some form of weight (e.g., the number of points assigned
to the MC). Some algorithms also capture the dispersion of
the points by recording variance. For reclustering, however,
only the distances between the MCs and their weights are
used. In this setting, MCs which are closer to each other are
more likely to end up in the same cluster. This is even true
if a density-based algorithm like DBSCAN [10] is used for
reclustering since here only the position of the MC centers
and their weights are used. The density in the area between
MCs is not available since it is not retained during the online
stage.

The basic idea of this work is that if we can capture not
only the distance between two adjacent MCs but also the
connectivity using the density of the original data in the
area between the MCs, then the reclustering results may be
improved. In the following we develop DBSTREAM which
stands for density-based stream clustering.

3.1 Leader-based Clustering
Leader-based clustering was introduced by Hardigan [21] as
a conventional clustering algorithm. It is straight-forward to
apply the idea to data streams (see, e.g., [20]).

DBSTREAM represents each MC by a leader (a data
point defining the MC’s center) and the density in an area
of a user-specified radius r (threshold) around the center.
This is similar to DBSCAN’s concept of counting the points
is an eps-neighborhood, however, here the density is not
estimated for each point, but only for each MC which can
easily be achieved for streaming data. A new data point
is assigned to an existing MC (leader) if it is within a
fixed radius of its center. The assigned point increases the
density estimate of the chosen cluster and the MC’s center
is updated to move towards the new data point. If the data
point falls in the assignment area of several MCs then all
of them are updated. If a data point cannot be assigned
to any existing MC, a new MC (leader) is created for the
point. Finding the potential clusters for a new data point is
a fixed-radius nearest-neighbor problem [22] which can be
efficiently dealt with for data of moderate dimensionality
using spatial indexing data structures like a k-d tree [23].
Variations of this simple algorithm were suggested in [24]
for outlier detection and in [25] for sequence modeling.

The base algorithm stores for each MC a weight which is
the number of data points assigned to the MC (see w1 to w4

in Figure 2). The density can be approximated by this weight
over the size of the MC’s assignment area. Note that we use
for simplicity the area here, however, the approach is not
restricted to two-dimensional data. For higher-dimensional
data volume is substituted for area.

Definition 3.1. The density of MC i is estimated by ρ̂i = wi

Ai
,

where wi is the weight and Ai, the area of the circle with
radius r around the center of MC i.

3.2 Competitive Learning

New leaders are chosen as points which cannot be assigned
to an existing MC. The positions of these newly formed
MCs are most likely not ideal for the clustering. To rem-
edy this problem, we use a competitive learning strategy
introduced in [26] to move the MC centers towards each
newly assigned point. To control the magnitude of the
movement, we use a neighborhood function h() similar to
self-organizing maps [27]. In our implementation we use the
popular Gaussian neighborhood function defined between
two points, a and b, as

h(a,b) = exp(−||a− b||2/(2σ2))

with σ = r/3 indicating that the used neighborhood size is
±3 standard deviations. Since we have a continuous stream,
we do not use a learning rate to reduce the neighborhood
size over time. This will accommodate slow concept drift
and also has the desirable effect that MCs are drawn to-
wards areas of higher density and ultimately will overlap, a
prerequisite for capturing shared density between MCs.

Note that moving centers could lead to collapsing MCs,
i.e., the centers of two or more MCs converge to a single
point. This behavior was already discussed in early work
on self-organizing maps [28]. This will happen since the
updating strategy makes sure that MCs are drawn to areas
of maximal local density. Since several MCs representing
the same area are unnecessary, many algorithms merge two
converging MCs. However, experiments during develop-
ment of our algorithm showed the following undesirable
effect. New MCs are constantly created at the fringes of a
dense area, then the MCs move towards the center and are
merged while new MCs are again created at the fringes. This
behavior is computationally expensive and degrades shared
densities estimation. Therefore, we prevent collapsing MCs
by restricting the movement for MCs in case they would
come closer than r to each other. This makes sure that the
centers do not enter the assignment radius of neighboring
MCs but will end up being perfectly packed together [29]
in dense areas giving us the optimal situation for estimating
shared density.

3.3 Capturing Shared Density

Capturing shared density directly in the online component
is a new concept introduced in this paper. The fact, that in
dense areas MCs will have an overlapping assignment area,
can be used to measure density between MCs by counting
the points which are assigned to two or more MCs. The
idea is that high density in the intersection area relative to
the rest of the MCs’ area means that the two MCs share an
area of high density and should be part of the same macro-
cluster. In the example in Figure 2 we see that MC2 and MC3

are close to each other and overlap. However, the shared
weight s2,3 is small compared to the weight of each of the
two involved MCs indicating that the two MCs do not form
a single area of high density. On the other hand, MC3 and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 4

MC4MC1

MC2

MC3

r

w1 = 8 s3,4 = 7

s2,3 = 2

w2 = 10

w3 = 15

w4 = 16

Fig. 2. MC1 is a single MC. MC2 and MC3 are close to each other but
the density between them is low relative to the two MCs densities while
MC3 and MC4 are connected by a high density area.

MC4 are more distant, but their shared weight s3,4 is large
indicating that both MCs form an area of high density and
thus should form a single macro-cluster. The shared density
between two MCs can be estimate by:
Definition 3.2. The shared density between two MCs, i

and j, is estimated by ρ̂ij =
sij
Aij

, where sij is the
shared weight and Aij is the size of the overlapping area
between the MCs.

Based on shared densities we can define a shared density
graph.
Definition 3.3. A shared density graph Gsd = (V,E) is

an undirected weighted graph, where the set of vertices
is the set of all MCs, i.e., V (Gsd) = MC, and the set
of edges E(Gsd) = {(vi, vj) | vi, vj ∈ V (Gsd) ∧ ρ̂ij >
0} represents all the pairs of MCs for which we have
pairwise density estimates. Each edge is labeled with the
pairwise density estimate ρ̂ij .

Note that most MCs will not share density with each
other in a typical clustering. This leads to a very sparse
shared density graph. This fact can be exploited for more
efficient storage and manipulation of the graph. We repre-
sent the sparse graph by a weighted adjacency list S. Fur-
thermore, during clustering we already find all fixed-radius
nearest-neighbors. Therefore, obtaining shared weights does
not incur any additional increase in search time.

3.4 Fading and Forgetting Data

To adapt to evolving data streams we use the exponential
fading strategy introduced in DenStream [6] and used in
many other algorithms. Cluster weights are faded in every
time step by a factor of 2−λ, where λ > 0 is a user-specified
fading factor. We implement fading in a similar way as in
D-Stream [9], where fading is only applied when a value
changes (e.g., the weight of a MC is updated). For example,
if the current time-step is t = 10 and the weight w was
last updated at tw = 5 then we apply for fading the factor
2−λ(t−tw) resulting in the correct fading for five time steps.
In order for this approach to work we have to keep a
timestamp with the time when fading was applied last for
each value that is subject to fading.

The leader-based clustering algorithm only creates new
and updates existing MCs. Over time, noise will cause
the creation of low-weight MCs and concept shift will
make some MCs obsolete. Fading will reduce the weight of

these MCs over time and the reclustering has a mechanism
to exclude these MCs. However, these MCs will still be
stored in memory and make finding the fixed-radius nearest
neighbors during the online clustering process slower. This
problem can be addressed by removing weak MCs and
weak entries in the shared density graph. In the following
we define weak MCs and weak shared densities.

Definition 3.4. We define MCmci as a weak MC if its weight
wi increases on average by less than one new data point
in a user-specified time interval tgap.

Definition 3.5. We define a weak entry in the shared density
graph as an entry between two MCs, i and j, which on
average increases its weight sij by less then α from new
points in the time interval tgap. α is the intersection factor
related to the area of the overlap of the MCs relative to
the area covered by MCs.

The rational of using α is that the overlap areas are
smaller than the assignment areas of MCs and thus are likely
to receive less weight. α will be discussed in detail in the
reclustering phase.

Let us assume that we check every tgap time step and
remove weak MCs and weak entries in the shared density
graph to recover memory and improve the clustering al-
gorithm’s processing speed. To ensure that we only remove
weak entries, we can use the weightwweak = 2−λtgap . At any
time, all entries that have a faded weight of less than wweak

are guaranteed to be weak. This is easy to see since any entry
that gets on average an additional weight of w′ ≥ 1 during
each tgap interval will have a weight of at least w′2−λtgap
which is greater or equal to wweak. Noise entries (MCs and
entries in the shared density graph) often receive only a
single data point and will reach wweak after tgap time steps.
Obsolete MCs or entries in the shared density graph stop
to receive data points and thus their weight will be faded
till it falls below wweak and then they are removed. It is
easy to show that for an entry with a weight w it will
take t = log2(w)/λ + tgap time steps to reach wweak. For
example, at λ = 0.01 and tgap = 1000 it will take 1333
time steps for an obsolete MC with a weight of w = 10 to
fall below wweak. The same logic applies to shared density
entries using αwweak. Note that the definition of weak
entries and wweak is only used for memory management
purpose. Reclustering uses the definition of strong entries
(see Section 4). Therefore, the quality of the final clustering
is not affected by the choice of tgap as long as it is not set to
a time interval which is too short for actual MCs and entries
in the shared density graph to receive at least one data point.
This clearly depends on the expected number of MCs and
therefore depends on the chosen clustering radius r and the
structure of the data stream to be clustered. A low multiple
of the number of expected MCs is typically sufficient. The
parameter tgap can also be dynamically adapted during
running the clustering algorithm. For example tgap can be
reduced to mark more entries as weak and remove them
more often if memory or processing speed gets low. On the
other hand, tgap can be increased during clustering if not
enough structure of the data stream is retained.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 5

3.5 The Complete Online Algorithm
Algorithm 1 shows our approach and the used cluster-
ing data structures and user-specified parameters in detail.
Micro-clusters are stored as a set MC. Each micro-cluster
is represented by the tuple (c, w, t) representing the cluster
center, the cluster weight and the last time it was updated,
respectively. The weighted adjacency list S represents the
sparse shared density graph which captures the weight of
the data points shared by MCs. Since shared density esti-
mates are also subject to fading, we also store a timestamp
with each entry. Fading also shared density estimates is
important since MCs are allowed to move which over time
would lead to estimates of intersection areas the MC is not
covering anymore.

The user-specified parameters r (the radius around the
center of a MC within which data points will be assigned
to the cluster) and λ (the fading rate) are part of the base
algorithm. α, tgap and wmin are parameters for reclustering
and memory management and will be discussed later.

Updating the clustering by adding a new data point x to
the clustering is defined by Algorithm 1. First, we find all
MCs for which x falls within their radius. This is the same as
asking which MCs are within r from x, which is the fixed-
radius nearest neighbor problem which can be efficiently
solved for data of low to moderate dimensionality [22]. If
no neighbor is found then a new MC with a weight of 1 is
created for x (line 4 in Algorithm 1). If one or more neigh-
bors are found then we update the MCs by applying the
appropriate fading, increasing their weight and then we try
to move them closer to x using the Gaussian neighborhood
function h() (lines 7–9).

Next, we update the shared density graph (lines 10–13).
To prevent collapsing MCs, we restrict the movement for
MCs in case they come closer than r to each other (lines
15–19). Finally, we update the time step.

The cleanup process is shown in Algorithm 2. It is
executed every tgap time steps and removes weak MCs and
weak entries in the shared density graph to recover memory
and improve the clustering algorithm’s processing speed.

4 SHARED DENSITY-BASED RECLUSTERING

Reclustering represents the algorithm’s offline component
which uses the data captured by the online component.
For simplicity we discuss two-dimensional data first and
later discuss implications for higher-dimensional data. For
reclustering, we want to join MCs which are connected by
areas of high density. This will allow us to form macro-
clusters of arbitrary shape, similar to hierarchical cluster-
ing with single-linkage or DBSCAN’s reachability, while
avoiding joining MCs which are close to each other but are
separated by an area of low density.

4.1 Micro-Cluster Connectivity
In two dimensions, the assignment area of a MC is given
by A = πr2. It is easy to show that the intersecting area
between two circles with equal radius r and the centers
exactly r apart from each other is A∗ = 4π−3

√
3

6 r2. By
normalizing the area of the circle to A = 1 (i.e., setting the
radius to r =

√
1/π) we get an intersection area A∗ = 0.391

Algorithm 1 Update DBSTREAM clustering.
Require: Clustering data structures initially empty or 0
MC . set of MCs
mc ∈MC has elements mc = (c, w, t) . center, weight,
last update time
S . weighted adjacency list for shared density graph
sij ∈ S has an additional field t . time of last update
t . current time step

Require: User-specified parameters
r . clustering threshold
λ . fading factor
tgap . cleanup interval
wmin . minimum weight
α . intersection factor

1: function UPDATE(x) . new data point x
2: N ← findFixedRadiusNN(x,MC, r)
3: if |N | < 1 then . create new MC
4: add (c = x, t = t, w = 1) toMC
5: else . update existing MCs
6: for each i ∈ N do
7: mci[w]← mci[w] 2−λ(t−mci[t]) + 1
8: mci[c]← mci[c] + h(x,mci[c])(x−mci[c])
9: mci[t]← t

. update shared density
10: for each j ∈ N where j > i do
11: sij ← sij 2−λ(t−sij [t]) + 1
12: sij [t]← t
13: end for
14: end for

. prevent collapsing clusters
15: for each (i, j) ∈ N ×N and j > i do
16: if dist(mci[c],mcj [c]) < r then
17: revert mci[c], mcj [c] to previous positions
18: end if
19: end for
20: end if
21: t← t+ 1
22: end function

Algorithm 2 Cleanup process to remove inactive micro-
clusters and shared density entries from memory.
Require: λ, α, tgap, t,MC and S from the clustering.

1: function CLEANUP()
2: wweak = 2−λtgap

3: for each mc ∈MC do
4: if mc[w] 2−λ(t−mc[t]) < wweak then
5: remove weak mc fromMC
6: end if
7: end for
8: for each sij ∈ S do
9: if sij 2−λ(t−sij [t]) < αwweak then

10: remove weak shared density sij from S
11: end if
12: end for
13: end function

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 6

or 39.1% of the circle’s area. Since we expect adjacent MCs
i and j which form a single macro-cluster in a dense area
to eventually be packed together till the center of one MC is
very close to the r boundary of the other, 39.1% is the upper
bound of the intersecting area.

Less dense clusters will also have a lower shared density.
To detect clusters of different density correctly, we need to
define connectivity relative to the densities (weights) of the
participating clusters. That is, for two MCs, i and j, which
are next to each other in the same macro-cluster we expect
that ρ̂ij ≈ (ρ̂i + ρ̂j)/2, i.e., the density between the MCs is
similar to the average density inside the MCs. To formalize
this idea we introduce the connectivity graph.

Definition 4.1. The connectivity graph Gc = (V,E) is an
undirected weighted graph with the micro clusters as
vertices, i.e., V (Gc) = MC. The set of edges is defined
by E(Gc) = {(vi, vj) | vi, vj ∈ V (Gc) ∧ cij > 0}, with
cij =

sij
(wi+wj)/2

. sij is the weight in the intersecting area
of MCs i and j and wi and wj are the MCs’ weights. The
edges are labeled with weights given by cij .

Note that the connectivity is not calculated as ρ̂ij
(ρ̂i+ρ̂j)/2

and thus has to be corrected for the difference in the size
of the area of the MCs and the intersecting area. This can
be easily done by introducing an intersection factor αij =

Aij/Ai which results in ρ̂ij
(ρ̂i+ρ̂j)/2

= αijcij . αij depends
on the distance between the participating MCs i and j.
Similar to the non-streaming algorithm CHAMELEON [13],
we want to combine MCs which are close together and have
high interconnectivity. This objective can be achieved by
simply choosing a single global intersection factor α. This
leads to the concept of α-connectedness.

Definition 4.2. Two MCs, i and j, are α-connected iff cij ≥
α, where α is the user-defined intersection factor.

For two-dimensional data the intersection factor α has a
theoretical maximum of 0.391 for an area of uniform density
when the two MCs are optimally packed (the centers are
exactly r apart). However, in dynamic clustering situations
MCs may not be perfectly packed all the time and minor
variations in the observed density in the data are expected.
Therefore, a smaller value than the theoretically obtained
maximum of 0.391 will be used in practice. It is important
to notice that a threshold on α is a single decision criterion
which combines the fact that two MCs are very close to
each other and that the density between them is sufficiently
high. Two MCs have to be close together or the intersecting
area and thus the expected weight in the intersection will
be small and the density between the MCs has to be high
relative to the density of the two MCs. This makes using the
concept of α-connectedness very convenient.

For 2-dimensional data we suggest α = .3 which is a less
stringent cut-off than the theoretical maximum. Doing this
will also connect MCs, even if they have not (yet) moved
into a perfect packing arrangement. Note also that the
definitions of α-connectedness uses the connectivity graph
which depends on the density of the participating MCs and
thus it can automatically handle clusters of vastly different
density within a single clustering.

Algorithm 3 Reclustering using shared density graph.
Require: λ, α, wmin, t,MC and S from the clustering.

1: function RECLUSTER()
2: weighted adjacency list C← ∅ . connectivity graph

3: for each sij ∈ S do . construct connectivity graph
4: ifMCi[w] ≥ wmin ∧MCj [w] ≥ wmin then
5: cij ← sij

(MCi[w]+MCj [w])/2

6: end if
7: end for
8: return findConnectedComponents(C ≥ α)
9: end function

4.2 Noise Clusters

To remove noisy MCs from the final clustering, we have to
detect these MCs. Noisy clusters are typically characterized
as having low density represented by a small weight. Since
the weight is related to the number of points covered by
the MC, we use a user-set minimum weight threshold to
identify noisy MCs. This is related to minPoints in DBSCAN
or Cm used by D-Stream.
Definition 4.3. The set of noisy MCs, MCnoisy, is the sub-

set of MC containing the MCs with less than a user-
specified minimum weight wmin. That is, MCnoisy =
{MCi |MCi ∈MC ∧ wi < wmin}.

Given the definition of noisy and weak clusters, we can
define strong MCs which should be used in the clustering.
Definition 4.4. A strong MC is a MC that is not noisy or

weak, i.e.,MCstrong =MC \ (MCnoisy ∪MCweak).

Note that tgap is typically chosen such that MCweak ⊆
MCnoisy and therefore the exact choice of tgap has no influ-
ence on the resulting clustering, only influencing runtime
performance and memory requirements.

4.3 Higher-dimensional Data

In dimensions higher than two the intersection area be-
comes an intersection volume. To obtain the upper limit
for the intersection factor α we use a simulation to esti-
mate the maximal fraction of the shared volume of MCs
(hyperspheres) that intersect in d = 1, 2, . . . , 10, 20 and 50-
dimensional space. The results are shown in Table 1. With
increasing dimensionality the volume of each hypersphere
increases much more than the volume of the intersection.
This leads at higher dimensions to a situation where it
becomes very unlikely that we observe many data points in
the intersection. This is consistent with the problem know
as the curse of dimensionality which effects distance-based
clustering as well as Euclidean density estimation. This
also effects other density based algorithms (e.g., D-Stream’s
attraction in [9]) in the same way. For high-dimensional
data we plan to extend a subspace clustering approach like
HPStream [15] to maintain a shared density graph in lower-
dimensional subspaces.

4.4 The Offline Algorithm

Algorithm 3 shows the reclustering process. The parameters
are the intersection factor α and the noise threshold wmin.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 7

TABLE 1
Maximal size of the intersection for two MCs (hyperspheres) and

maximal number of neighboring MCs in d dimensions.

Dimensions d 1 2 3 4 5 6 7

Intersection area 50% 39% 31% 25% 21% 17% 14%
Neighbors |Kd| 2 6 12 24 40 72 126

Dimensions d 8 9 10 20 50

Intersection area 12% 10% 8% 1.5% .02%
Neighbors |Kd| 240 272 ≥ 336 ≥ 17,400 ≥ 50,000,000

The connectivity graph C is constructed using only shared
density entries between strong MCs. Finally, the edges in
the connectivity graph with a connectivity value greater
than the intersection threshold are used to find connected
components representing the final clusters.

4.5 Relationship to Other Algorithms
DBSTREAM is closely related to DBSCAN [10] with two
important differences. Similar to DenStream [6], density
estimates are calculated for micro-clusters rather than the
epsilon neighborhood around each point. This reduces com-
putational complexity significantly. The second change is
that DBSCAN’s concept of reachability is replaced by α-
connectivity. Reachability only reflects closeness of data
points, while α-connectivity also incorporates interconnec-
tivity introduced by CHAMELEON [13].

In general, the connectivity graph developed in this
paper can be seen as a special case of a shared nearest
neighbor graph where the neighbors shared by two MCs are
given by the points in the shared area. As such it does not
represent k shared nearest neighbors but the set of neighbors
given by a fixed radius. DBSTREAM uses the most simple
approach to partition the connectivity graph by using α as
a global threshold and then finding connected components.
However, any graph partitioning scheme, e.g., the ones used
for CHAMELEON or spectral clustering, can be used to
detect clusters.

Compared to D-Stream’s concept of attraction which
is used between grid cells, DBSTREAM’s concept of
α-connectivity is also applicable to micro-clusters. DB-
STREAM’s update strategy for micro cluster centers based
on ideas from competitive learning allows the centers to
move towards areas of maximal local density, while D-
Stream’s grid is fixed. This makes DBSTREAM more flexible
which will be illustrated in the experiments by the fact that
DBSTREAM typically needs fewer MCs to model the same
data stream.

5 COMPUTATIONAL COMPLEXITY

Space complexity of the clustering depends on the number
of MCs that need to be stored inMC. In the worse case, the
maximum number of strong MCs at any time is tgap MCs
and is reached when every MC receives exactly a weight
of one during each interval of tgap time steps. Given the
cleanup strategy in Algorithm 2, where we remove weak
MCs every tgap time steps, the algorithm never stores more
than k′ = 2tgap MCs.

The space complexity of MC is linear in the maximal
number of MCs k′. The worst case size of the adjacency
list of the shared density graph S depends on k′ and the
dimensionality of the data. In the 2D case each MC can
have a maximum of |N | = 6 neighbors (at optimal packing).
Therefore, each of the k′ MCs has in the adjacency list S at
most six entries resulting in a space complexity of storing
MC and S of O(tgap).

For higher-dimensional data streams, the maximal num-
ber of possible adjacent hyperspheres is given by Newton’s
number also referred to as kissing number [29]. Newton’s
number defines the maximal number of hyperspheres which
can touch a hypersphere of the same size without inter-
secting any other hypersphere. If we double the radius
of all hyperspheres in this configuration then we get our
scenario with sphere centers touching the surface of the
center sphere. We use Kd do denote Newton’s number in
d dimensions. Newton’s exact number is known only for
some small dimensionality values d, and for many other
dimensions only lower and upper bounds are known (see
Table 1 for d = 1 to 50). Note, that Newton’s number
grows fast, reaches 196,560 for d = 24 and is unknown for
most larger d. This growth would make storing the shared
weights for high-dimensional data in a densely packed area
very expensive. However, we also know that the maximal
neighborhood size |Nmax| ≤ min(k′ − 1,Kd), since we
cannot have more neighbors than we have MCs. There-
fore, the space complexity of maintaining S is bounded by
O(k′|Nmax|).

To analyze the algorithm’s time complexity, we need to
consider all parts of the clustering function. The fixed-radius
nearest neighbor search can be done using linear search in
O(dnk′), where d is the data dimensionality, n is the number
of data points clustered and k′ is the number of MCs.
The time complexity can be improved to O(dn log(k′))
using a spacial indexing data structure like a k-d tree [23].
Adding or updating a single MC is done in time linear in
n. For the shared density graph we need to update in the
worst case O(n |Nmax|2) elements in S. The overall time
complexity of clustering is thus O(dn log(k′) + n |Nmax|2).
The cleanup function’s time complexity depends on the
size of MC which is linear in the number of MCs and S
which depends on the maximal neighborhood size. Also,
the cleanup function is only applied every tgap points. This
gives O(n(k

′+k′|Nmax|)
tgap

) for cleanup.
Reclustering consists of finding the minimum weight

which involves sorting with a time complexity of
O(k′ log(k′)), building the adjacency list for the connectivity
graph in O(k′|Nmax|) operations, and then finding the con-
nected components which takes time linear in the sum of the
number of vertices and edges O(k′ + k′|Nmax|). The whole
reclustering process takes O(k′ log(k′) + 2k′|Nmax| + k′)
operations.

For low-dimensional data, d and |Nmax| = Kd are small
constants. For high-dimensional data, the worst case neigh-
borhood size is |Nmax| = k′ = 2tgap. The space and time
complexity for low and high-dimensional data is compared
in Table 2. Although, for high-dimensional data space and
time complexity is in the worst case proportional to the
square of the maximal number of MCs (which is controlled

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 8

TABLE 2
Clustering complexity for low and high-dimensional data.

low dimensionality high dimensionality
space complexity O(tgap) O(t2gap)
time complexity

clustering O(nlog(2tgap)) O(nt2gap)
cleanup O(n) O(ntgap)
reclustering O(tgap log(tgap)) O(t2gap)

by tgap), the experiments below show that in practice the
number of edges per MC in the shared density graph stays
even for higher-dimensional data at a very manageable
size. In a simulation of a mixture of three Gaussians in 50
dimensions and a tgap = 1000, the actual average number of
entries per MC in S is below 20 compared to the theoretical
maximum of 2tgap = 2000. Note that at this dimensionality
K50 would already be more than 50,000,000. This results in
very good performance in practice. The following experi-
ments also show that shared density reclustering performs
very well with a significantly smaller number of MCs than
other approaches and thus all three operations can typically
be performed online.

6 EXPERIMENTS

To perform our experiments and make them reproducible,
we have implemented/interfaced all algorithms in a pub-
licly available R-extension called stream [30]. stream pro-
vides an intuitive interface for experimenting with data
streams and data stream algorithms. It includes generators
for all the synthetic data used in this paper as well as a grow-
ing number of data stream mining algorithms including
clustering algorithms available in the MOA (Massive Online
Analysis) framework [31] and the algorithm discussed in
this paper.

In this paper we use four synthetic data streams called
Cassini, Noisy Mixture of Gaussians, and DS3 and DS41

used to evaluate CHAMELEON [13]. These data sets do not
exhibit concept drift. For data with concept drift we use
MOA’s Random RBF Generator with Events. In addition
we use several real data sets called Sensor2, Forest Cover
Type3 and the KDD CUP’99 data4 which are often used for
comparing data stream clustering algorithms.

Kremer et al. [32] discuss internal and external evalua-
tion measures for the quality of data stream clustering. We
conducted experiments with a large set of evaluation mea-
sures (purity, precision, recall, F-measure, sum of squared
distances, silhouette coefficient, mutual information, ad-
justed Rand index). In this study we mainly report the ad-
justed Rand index to evaluate the average agreement of the
known cluster structure (ground truth) of the data stream
with the found structure. The adjusted Rand index (adjusted
for expected random agreements) is widely accepted as the
appropriate measure to compare the quality of different par-
titions given the ground truth [33]. Zero indicates that the
found agreements can be entirely explained by chance and

1. http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
2. http://www.cse.fau.edu/∼xqzhu/stream.html
3. http://archive.ics.uci.edu/ml/datasets/Covertype
4. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

V1

V
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1

V
2

(a) Cassini (b) Noisy mixture of Gaussians

0 100 200 300 400 500 600 700
10

0
20

0
30

0
40

0

x

y

(c) Chameleon dataset DS3

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0

x

y

(d) Chameleon dataset DS4

Fig. 3. Four example data sets clustered with DBSTREAM. MCs and
their assignment area are shown as circles. The shared density graph is
shown as solid lines connecting MCs.

the closer the index is to one, the better the agreement. For
clustering with concept drift, we also report average purity
and average within cluster sum of squares. However, like
most other measures, these make comparison difficult. For
example, average purity (equivalent to precision and part of
the F-measure) depends on the number of clusters and thus
makes comparison of clusterings with a different number of
clusters invalid. The Within cluster Sum of Squares (WSS)
favors algorithms which produce spherical clusters (e.g., k-
means-type algorithms). A smaller WSS represent tighter
clusters and thus a better clustering. However, WSS always
will get smaller with an increasing number of clusters. We
report these measures here for comparison since they are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 9

used in many data stream clustering papers.

6.1 Clustering Static Structures

A data stream clustering algorithm needs to be able to
adapt to concept drift, however, if a clustering algorithm
is not able to cluster static structures, then its ability to
adapt does not matter. Therefore, we use in our first set
of experiments data with fixed known patterns. Four data
streams are chosen because they are representatives for
difficult static clustering problems. Example points for all
four data streams are shown in grey in Figure 3. Cassini
is a well know artificial dataset with three clusters of uni-
form density, where two clusters are concave and close to
the center cluster. The Noisy Mixture of Gaussians stream
contain three clusters, where the centers of the Gaussians
and the covariance matrices are randomly chosen for each
new stream. The Gaussians often overlap and 50% uniform
noise is added. Finally, we consider two datasets introduced
for the CHAMELEON clustering algorithm (DS3 and DS4).
These datasets contain several clustering challenges includ-
ing nested clusters of non-convex shape and non-uniform
noise.

Figure 3 shows example clustering results for each data
stream. Data points are shown in grey and the micro-cluster
centers are shown in black with a dotted circle representing
each MC’s assignment area. The edges in the shared density
graph are represented by black lines connecting MCs. We
see that the shared density graph picks up the general
structure of the clusters very well. In Figures 3 (c) and (d) we
see several errors where the shared density graph connects
neighboring clusters. These connections are typically only
single edges and could be avoided using a more sophisti-
cated, but also slower graph partitioning approach.

To investigate the effectiveness of using a shared density
graph introduced for reclustering in DBSTREAM, we per-
form the following simulation study with 10,000 data points
per stream. We use such short streams since the structures
are static and only minor changes occur after an initial
learning phase where the algorithms place MCs.

We create a data stream and then use DBSTREAM with
shared density graph using different clustering radii. To
investigate the contribution of the shared density reclus-
tering, we also report the results for the leader-based al-
gorithm used in DBSTREAM, but with pure reachability
reclustering. For comparison we also use the original D-
Stream with reachability, D-Stream with attraction, Den-
Stream and CluStream. All algorithms were tuned such that
they produce a comparable number of MCs (within ±10%
of the DBSTREAM results). To find the best parameters,
we use grid search over a set of reasonable parameters
for each algorithm. We searched for DBSTREAM the best
combination of wmin = {1, 2, 3} and α = {0.1, 0.2, 0.3}.
For D-Stream we searched a gridsize of the same range as
DBSTREAM’s r (in 0.01 increments) and Cm = {1, 2, 3}.
For DenStream we searched an ε in the same range as
DBSTREAM’s r, µ = {1, 2, . . . , 20} and β = {0.2, 0.4}.
For CluStream we set the number of micro-clusters to the
number produced by DBSTREAM. We repeat this procedure
with 10 random samples and then evaluate average cluster
quality.

TABLE 3
Adjusted Rand index for the Cassini data.

r 0.8 0.6 0.4 0.2 0.1
of MCs 14 22 44 144 482
DBSTREAM 0.89 0.99 0.97 1.00 0.99

without shared density 0.35 0.42 0.50 1.00 0.99
D-Stream -0.02 -0.02 0.34 0.87 0.55
D-Stream + attraction 0.62 0.83 0.71 0.85 0.51
DenStream - 0.10 0.58 0.48 -
CluStream 0.52 0.54 0.50 0.34 0.07

TABLE 4
Adjusted Rand index for Noisy mixture of 3 random Gaussians with

50% noise.

r 0.2 0.1 0.05 0.03 0.01
of MCs 5 13 35 71 308
DBSTREAM 0.60 0.78 0.74 0.63 0.10

without shared density 0.49 0.63 0.70 0.68 0.31
D-Stream 0.27 0.32 0.32 0.47 0.22
D-Stream + attraction 0.42 0.42 0.47 0.47 0.20
DenStream - 0.61 0.64 - -
CluStream 0.47 0.57 0.52 0.61 0.61

TABLE 5
Adjusted Rand index for Chameleon dataset DS3.

r 35 30 25 20 15
of MCs 160 155 198 296 406
DBSTREAM 0.81 0.74 0.78 0.76 0.88

without shared density 0.0004 0.22 0.21 0.49 0.72
D-Stream 0.29 0.37 0.61 0.46 0.37
D-Stream + attraction 0.29 0.37 0.61 0.46 0.37
DenStream 0.22 0.22 0.01 - -
CluStream 0.34 0.27 0.26 0.18 0.08

TABLE 6
Adjusted Rand index for the Chameleon dataset DS4.

r 0.7 0.5 0.3 0.2 0.1
of MCs 13 24 58 120 434
DBSTREAM 0.72 0.97 1.00 1.00 0.84

without shared density 0.70 0.92 0.94 0.98 0.99
D-Stream 0.00 0.43 0.94 0.96 0.84
D-Stream + attraction 0.96 0.74 0.88 0.99 0.84
DenStream 0.51 0.44 0.58 - -
CluStream 0.64 0.61 0.59 0.64 0.62

The results are presented in Tables 3 to 6. The best results
are set in bold. If the results of two algorithms were very
close then we used the Student’s t-test to determine if the
difference is significant (the scores of the 10 runs are approx-
imately normally distributed). If the difference between the
top algorithm is not significant at a 1% significance level,
then we set both in bold.

For the Cassini data, DBSTREAM finds often a perfect
clustering at only 14 MCs while D-Stream needs many more
MCs to produce comparable results. CluStream (with k-
means) reclustering does not perform well since the clusters
are not strictly convex. The mixture of three Gaussians is
a hard problem since the randomly placed clusters often
overlap significantly and 50% of the data points are uni-
formly distributed noise. DBSTREAM performs similarly to
CluStream and DenStream while D-Stream performs poorly.
Finally, on DS3 and DS4, DBSTREAM performs in most

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 10

cases superior to all competitors.
The experiments show that DBSTREAM consistently

performs equally well or better than other reclustering
strategies with fewer and therefore larger MCs. A reason
is that larger MCs mean that the intersection areas between
MCs are also larger and potentially can contain more points
which improves the quality of the estimates of the shared
density. It is interesting that clustering quality (in terms
of the adjusted Rand index) of DBSTREAM with a very
small number of MCs is comparable to the clustering quality
achieved by other reclustering methods with many more
MCs. This is an important finding since less and larger MCs
means faster execution and the lower memory requirements
for the MCs can be used to offset the addition memory
needed to maintain the shared density graph.

6.2 Clustering with Concept Drift
Next, we investigate clustering performance over several
data stream. For evaluation, we use the horizon-based
prequential approach introduced in the literature [6] for
clustering evolving data streams. Here the current clustering
model is evaluated with the next 1000 points in the horizon
and then these points are used to update the model. Recent
detailed analysis of prequential error estimation for classifi-
cation can be found in [34], [35]. We compare DBSTREAM
again to D-Stream, DenStream and CluStream. Note that
the number of clusters varies over time for some of the
datasets. This needs to be considered when comparing to
CluStream, which uses a fixed number of clusters and thus
is at a disadvantage in this situation.

Figure 4 shows the results over the first 10,000 points
from a stream from the Cassini data set. DBSTREAM’s
shared density approach learns the structure quickly while
CluStream’s k-means reclustering cannot cluster the con-
cave structure of the data properly. DenStream often tends
to place single or few MCs in its own cluster, resulting in
spikes of very low quality. D-Stream is slower in adapting to
the structure and produces results inferior to DBSTREAM.

Figures 5 show the results on a stream created with
MOA’s Random Radial Base Function (RBF) Generator with
Events. The events are cluster splitting/merging and dele-
tion/creation. We use the default settings with 10% noise,
start with 5 clusters and allow one event every 10,000 data
points. We use for DenStream the ε parameter as suggested
in the original paper. Since the number of clusters changes
over time, and CluStream needs a fixed number, we set
k to 5, the initial number of clusters, accepting the fact
that sometimes this will be incorrect. CluStream does not
perform well because of this fixed number of macro-clusters
and the noise in the data while DenStream, D-Stream and
DBSTREAM perform better.

Next, we use a data stream consisting of 2 million
readings from the 54 sensors deployed in the Intel Berkeley
Research lab measuring humidity, temperature, light and
voltage over a period of more than one month. The results
in Figure 6 show that all clustering algorithms detect daily
fluctuations, and DBSTREAM produces the best results.

Finally, we use the Forest Cover Type data, which con-
tains 581,012 instances of cartographic variables (we use
the 10 numeric variables). The ground truth groups the in-
stances into 7 different forest cover types. Although this data

is not a data stream, we use it here in a streaming fashion.
Figure 7 shows the results. The data set is hard to cluster
with many clusters in the ground truth heavily overlapping
with each other. For some part of the data the adjusted Rand
index for all algorithms even becomes negative, indication
that structure found in the cartographic variables does not
correspond with the ground truth. DBSTREAM is again the
top performer with on average a higher average adjusted
Rand index than DenStream and CluStream.

In general, DBSTREAM performs very well in terms of
average corrected Rand index, high average purity and a
small within cluster sum of squares (WSS). Only in one in-
stance D-Stream produces a better purity result. CluStream
produces twice a slightly lower WSS. This can be explained
by the fact that CluStream uses k-means reclustering which
directly tries to minimize WSS.

6.3 Scalability Results

A major concern with scalability is that Newton’s num-
ber increases dramatically with the dimensionality d and,
therefore, even for a moderately high dimensionality (e.g.,
K17 > 5000) many operations will take close to O(k′2)
instead of O(k′) time. In order to analyze scalability, we
use mixture of Gaussians data similar to the data set used
above and the well known KDD Cup’99 data set.

We create mixture of Gaussians data sets with three
clusters in d-dimensional space, where d is ranging from 2 to
50. Since we are interested in the average number of edges of
the shared density graph and noise would introduce many
MCs without any edge, we add no noise to the data for the
following experiment. We always use 10,000 data points for
clustering, repeat the experiment for each value of d ten
times and report the average. To make the results better
comparable, we tune the clustering algorithm by choosing
r to produce about 100–150 MCs. Therefore we expect the
maximum for the average edges per MC in the shared
density to be between 100 and 150 for high-dimensional
data. Figure 9 shows that the average number of edges in
the shared density graph grows with the dimensionality of
the data. However, it is interesting to note that the number is
significantly less than expected given the worst case number
obtained via Newton’s number or k′. After a dimensionality
of 25 the increase in the number of edges starts to flatten out
at a very low level. This can be explained by the fact that
only the MCs representing a cluster in the data are packed
together and the MCs on the surface of each cluster have
significantly less neighbors (only towards the inside of the
cluster). Therefore, clusters with larger surface area reduce
the average number of edges in the shared density graph.
This effect becomes more pronounces in higher dimensions
since the surface area increases exponentially with d and
this offsets the exponential increase in possible neighbors.

Next, we look at the cost of maintaining the shared
density graph for a larger evolving data stream. The KDD
Cup’99 data set contains network traffic data with more than
4 million records and we use the 34 numerical features for
clustering. First, we standardize the values by subtracting
the feature mean and dividing by the feature standard
deviation. We use a radius of r = 1 for clustering. Since
we are interested in the memory cost, we set α and wnoise

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 11

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position in Stream

C
or

re
ct

ed
 R

an
d

DBSTREAM
D−Stream
CluStream
DenStream

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. C
or

r.
R

an
d

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. P
ur

ity

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

W
S

S

0

20

40

60

80

100

Fig. 4. Learning the structure of the Cassini data set over the first 10,000 data points.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position in Stream (in 1000s)

C
or

re
ct

ed
 R

an
d

DBSTREAM
D−Stream
CluStream
DenStream

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. C
or

r.
R

an
d

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. P
ur

ity

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

W
S

S

0

5

10

15

20

25

30

Fig. 5. Clustering quality on MOA’s Random RBF Generator (100,000 data points).

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position in Stream (in 1000s)

C
or

re
ct

ed
 R

an
d

DBSTREAM
D−Stream

CluStream
DenStream

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. C
or

r.
R

an
d

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. P
ur

ity

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

W
S

S

1e+02

5e+02
1e+03

5e+03
1e+04

5e+04
1e+05

Fig. 6. Sensor data (2 million data points).

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Position in Stream (in 1000s)

C
or

re
ct

ed
 R

an
d

DBSTREAM
D−Stream
CluStream
DenStream

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. C
or

r.
R

an
d

0.00

0.05

0.10

0.15

0.20

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

A
vg

. P
ur

ity

0.0

0.2

0.4

0.6

0.8

1.0

D
B

S
T

R
E

A
M

D
.S

tr
ea

m
C

lu
S

tr
ea

m
D

en
S

tr
ea

m

W
S

S

0

1000

2000

3000

4000

5000

6000

7000

Fig. 7. Clustering quality on the Forest Cover Type data set.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 12

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

Position in Stream (in 1000s)

M
em

or
y

C
os

t

Number of MCs
Entries in the shared density graph

0 1000 2000 3000 4000

0

20

40

60

80

100

120

Position in Stream (in 1000s)

P
ro

ce
ss

in
g

tim
e

[µ
s]

Total time per data point
Shared density graph portion

0 1000 2000 3000 4000

0

2000

4000

6000

8000

10000

12000

Position in Stream (in 1000s)

M
em

or
y

C
os

t

Number of MCs
Entries in the shared density graph

0 1000 2000 3000 4000

0

50

100

150

200

250

Position in Stream (in 1000s)

P
ro

ce
ss

in
g

tim
e

[µ
s]

Total time per data point
Shared density graph portion

(a) (b)

Fig. 8. Memory cost and run time on the KDD Cup’99 data with r = 1, α = 0, wnoise = 0 and for (a) we use λ = 1/1000 (fast fading) and for (b)
λ = 1/10000 (slow fading). Fading is called every n = 1000 points.

●

●

●

●

●
●

dimensionality d

A
ve

ra
ge

 E
dg

es
 p

er
 M

C

0
5

10
15

20

2 5 10 25 50

Fig. 9. Average number of edges in the shared density graph for simu-
lated mixture of Gaussians data sets with different dimensionality d.

to zero. Therefore all MCs and entries in the shared density
graph will be reported. We report here the results for two
settings for λ (slow and fast fading). Figure 8 shows the
results. The top plots show the memory cost in terms of the
number of MCs and the number of entries in the shared
density graph. The bottom graphs show the increase in time
needed to maintain the shared density graph relative to
the time used by the base-line clustering algorithm. Both
settings for λ show similar general behavior with more MCs
and connections in the first and third part of the data stream.
This reflects the fact that the data only contains data points
from a single class between the time instances of roughly
1.5 and 3.5 million. Interesting is that the number of entries
in the shared density graph stays very low compared to
the worst case given by k′(k′ − 1) where k′ is the number
of MCs. In fact, the experiments show that for the KDD
Cup’99 data set the average number of entries per MC in
the shared density graph never exceed 3 which is even

very low compared to the value of 15–20 obtained in the
previous experiment with Gaussians. We can speculate that
the data forms lower-dimensional manifolds, which dras-
tically reduces the number of possible neighbors. This is
an interesting finding since it means that maintaining the
shared density graph is feasible even for high-dimensional
data.

For run time we report the total processing time per data
point of clustering and recording shared density (averaged
over 1000 points) in the two bottom graphs of Figure 8.
For comparison, we also show the processing time for just
the part that records shared density. As expected, the time
required for recording shared density follow the number of
entries in the shared density graph and peak during the first
1.5 million data points. Compared to the total time needed
to cluster a new data point, the shared density graph portion
is negligible. This results from the fact, that recording the
graph does not incur any additional search cost, after all
fixed-radius nearest neighbors are found for the clustering
algorithm.

7 CONCLUSION

In this paper, we have developed the first data stream clus-
tering algorithm which explicitly records the density in the
area shared by micro-clusters and uses this information for
reclustering. We have introduced the shared density graph
together with the algorithms needed to maintain the graph
in the online component of a data stream mining algorithm.
Although, we showed that the worst-case memory require-
ments of the shared density graph grow extremely fast with
data dimensionality, complexity analysis and experiments
reveal that the procedure can be effectively applied to data

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 13

sets of moderate dimensionality. Experiments also show
that shared-density reclustering already performs extremely
well when the online data stream clustering component
is set to produce a small number of large MCs. Other
popular reclustering strategies can only slightly improve
over the results of shared density reclustering and need
significantly more MCs to achieve comparable results. This
is an important advantage since it implies that we can
tune the online component to produce less micro-clusters
for shared-density reclustering. This improves performance
and, in many cases, the saved memory more than offset the
memory requirement for the shared density graph.

ACKNOWLEDGMENTS

Work by M. Bolaños was supported in part by a Research
Experience for Undergraduates (REU) supplement to Grant
No. IIS-0948893 by the National Science Foundation.

The authors would like to thank the anonymous review-
ers for their many helpful comments which improved this
manuscript significantly.

REFERENCES

[1] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering
data streams,” in Proceedings of the ACM Symposium on Foundations
of Computer Science, 12-14 Nov. 2000, pp. 359–366.

[2] C. Aggarwal, Data Streams: Models and Algorithms, ser. Advances
in Database Systems, Springer, Ed., 2007.

[3] J. Gama, Knowledge Discovery from Data Streams, 1st ed. Chapman
& Hall/CRC, 2010.

[4] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L.
F. d. Carvalho, and J. a. Gama, “Data stream clustering: A survey,”
ACM Computing Surveys, vol. 46, no. 1, pp. 13:1–13:31, Jul. 2013.

[5] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB ’03), 2003, pp. 81–92.

[6] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in Proceedings of the
2006 SIAM International Conference on Data Mining. SIAM, 2006,
pp. 328–339.

[7] Y. Chen and L. Tu, “Density-based clustering for real-time stream
data,” in Proceedings of the 13th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. New York, NY,
USA: ACM, 2007, pp. 133–142.

[8] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-
based clustering of data streams at multiple resolutions,” ACM
Transactions on Knowledge Discovery from Data, vol. 3, no. 3, pp.
1–28, 2009.

[9] L. Tu and Y. Chen, “Stream data clustering based on grid density
and attraction,” ACM Transactions on Knowledge Discovery from
Data, vol. 3, no. 3, pp. 1–27, 2009.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’1996), 1996, pp. 226–
231.

[11] A. Hinneburg, E. Hinneburg, and D. A. Keim, “An efficient
approach to clustering in large multimedia databases with noise,”
in Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD-98). AAAI Press, 1998, pp. 58–
65.

[12] L. Ertoz, M. Steinbach, and V. Kumar, “A new shared nearest
neighbor clustering algorithm and its applications,” in Workshop
on Clustering High Dimensional Data and its Applications at 2nd SIAM
International Conference on Data Mining, 2002.

[13] G. Karypis, E.-H. S. Han, and V. Kumar, “Chameleon:
Hierarchical clustering using dynamic modeling,” Computer,
vol. 32, no. 8, pp. 68–75, Aug. 1999. [Online]. Available:
http://dx.doi.org/10.1109/2.781637

[14] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan, “Clustering data streams: Theory and practice,”
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 3,
pp. 515–528, 2003.

[15] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for projected clustering of high dimensional data streams,” in
Proceedings of the International Conference on Very Large Data Bases
(VLDB ’04), 2004, pp. 852–863.

[16] D. Tasoulis, N. Adams, and D. Hand, “Unsupervised clustering in
streaming data,” in IEEE International Workshop on Mining Evolving
and Streaming Data. Sixth IEEE International Conference on Data
Mining (ICDM 2006), Dec. 2006, pp. 638–642.

[17] D. K. Tasoulis, G. Ross, and N. M. Adams, “Visualising the cluster
structure of data streams,” in Advances in Intelligent Data Analysis
VII, ser. Lecture Notes in Computer Science. Springer, 2007, pp.
81–92.

[18] K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai, “E-
stream: Evolution-based technique for stream clustering,” in
ADMA ’07: Proceedings of the 3rd international conference on Advanced
Data Mining and Applications. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 605–615.

[19] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree:
indexing micro-clusters for anytime stream mining,” Knowledge
and Information Systems, vol. 29, no. 2, pp. 249–272, 2011.

[20] A. Amini and T. Y. Wah, “Leaden-stream: A leader density-
based clustering algorithm over evolving data stream,” Journal of
Computer and Communications, vol. 1, no. 5, pp. 26–31, 2013.

[21] J. A. Hartigan, Clustering Algorithms, 99th ed. New York, NY,
USA: John Wiley & Sons, Inc., 1975.

[22] J. L. Bentley, “A survey of techniques for fixed radius near neigh-
bor searching,” Tech. Rep., 1975.

[23] ——, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
Sep. 1975.

[24] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A
geometric framework for unsupervised anomaly detection: De-
tecting intrusions in unlabeled data,” in Data Mining for Security
Applications. Kluwer, 2002.

[25] M. Hahsler and M. H. Dunham, “Temporal structure learning for
clustering massive data streams in real-time,” in SIAM Conference
on Data Mining (SDM11). SIAM, April 2011, pp. 664–675.

[26] C. Isaksson, M. H. Dunham, and M. Hahsler, “Sostream: Self
organizing density-based clustering over data stream,” in Machine
Learning and Data Mining in Pattern Recognition, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7376,
pp. 264–278.

[27] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21,
pp. 1–6, 1998.

[28] ——, “Neurocomputing: Foundations of research,” J. A. Anderson
and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988, ch.
Self-organized Formation of Topologically Correct Feature Maps,
pp. 509–521.

[29] J. H. Conway, N. J. A. Sloane, and E. Bannai, Sphere-packings,
lattices, and groups. New York, NY, USA: Springer-Verlag, 1987.

[30] M. Hahsler, M. Bolanos, and J. Forrest, stream: Infrastructure for
Data Stream Mining, 2015, R package version 1.2-2.

[31] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive
online analysis,” Journal of Machine Learning Research, vol. 99, pp.
1601–1604, August 2010.

[32] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and
B. Pfahringer, “An effective evaluation measure for clustering on
evolving data streams,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2011, pp. 868–876.

[33] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[34] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, pp. 317–346, 2013.

[35] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and
B. Pfahringer, “Efficient online evaluation of big data stream
classifiers,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’15.
ACM, 2015, pp. 59–68.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING — PREPRINT, ACCEPTED 1/17/2016 14

Michael Hahsler received his MS degree in
business administration and his PhD degree in
information engineering and management from
the Vienna University of Economics and Busi-
ness, Austria, in 1998 and 2001, respectively.
After receiving his post-doctoral lecture qualifi-
cation in business informatics in 2006, he joined
Southern Methodist University as a visiting pro-
fessor in computer science and engineering. He
currently is an assistant professor in Engineer-
ing Management, Information, and Systems, and

director of the Intelligent Data Analysis Lab at Southern Methodist
University. He also serves as an editor of the Journal of Statistical
Software. His research interests include data mining and combinatorial
optimization, and he is the lead developer and maintainer of several R
extension packages for data mining (e.g., arules, dbscan, stream, TSP).
He is a member of the IEEE Computer Society.

Matthew Bolaños received his BS degree with
distinction in computer science and engineering
from Southern Methodist University in 2014. He
worked for three years as an undergraduate re-
search assistant on various data mining projects
for the Intelligent Data Analysis Lab at Southern
Methodist University where he made significant
contributions to the stream R package. He re-
ceived a master’s degree from Carnegie Mellon’s
Human Computer Interaction Institute and works
now for Research Now. His research interests

include data stream clustering and user experience design.

