CONTRIBUTED RESEARCH ARTICLE

Pomdp: A Computational Infrastructure
for Partially Observable Markov Decision

Processes
by Michael Hahsler and Anthony R. Cassandra

Abstract Many important problems involve decision-making under uncertainty. For example, a medi-
cal professional needs to make decisions about the best treatment option based on limited information
about the current state of the patient and uncertainty about outcomes. Different approaches have been
developed by the applied mathematics, operations research, and artificial intelligence communities
to address this difficult class of decision-making problems. This paper presents the pomdp pack-
age, which provides a computational infrastructure for an approach called the partially observable
Markov decision process (POMDP), which models the problem as a discrete-time stochastic control
process. The package lets the user specify POMDPs using familiar R syntax, apply state-of-the-art
POMDP solvers, and then take full advantage of R’s range of capabilities, including statistical analysis,
simulation, and visualization, to work with the resulting models.

Introduction

Many important problems require decision-making without perfect information, and where decisions
made today will affect the future. For example, in diabetes prevention and care, the primary care
provider needs to make decisions about screening, early interventions like suggesting lifestyle modi-
fication, and eventually medication for disease management based on a patient’s available medical
history. Especially, screening and lifestyle modifications need to be used early on to be effective in
preventing severe and debilitating diseases later on. This is clearly a difficult problem that involves
uncertainty and requires a long-term view. We have studied this problem using the partially observ-
able Markov decision process approach in (Kamalzadeh et al. 2021) and, in the absence of solvers for
R, we started the development of the pomdp package described in this paper.

A Markov decision process (MDP) is a discrete-time stochastic control process that models how an
agent decides on what actions to take when facing an environment whose dynamics can be adequately
modeled by a Markov process that can be affected by the agent’s behavior (Puterman 1994). That
is, the environment transitions between a set of states where transition probabilities only depend on
the current state and are conditioned on the agent’s actions. Over time, the agent receives rewards
depending on the actions and the environment’s state. The agent’s objective is to make a plan that
maximizes its total reward earned. A plan can be expressed as a mapping of each possible state to the
best action in that state. The best possible plan is often called the optimal policy. For MDP problems,
the agent is always aware of the state of the environment and can make decisions directly following
such a policy.

A partially observable Markov decision process (POMDP) generalizes the concept of the MDP
to model more realistic situations where the agent cannot directly observe the environment’s state.
Here, the agent must infer the current state using observations that are only probabilistically linked
to the underlying state. The agent can form a belief about what states it may be in and update its
belief when new observations are made. In this setting, the agent has to base its actions on its current
belief. A POMDP can be modeled as a belief MDP where the underlying Markov model uses belief
states instead of the original states of the environment. While the original state space is typically
modeled as a finite set of states, making MDPs readily solvable using dynamic programming, the
agent’s belief is represented by a probability distribution over the states in the form of a continuous
probability simplex and are therefore much more challenging to solve. The volume of the believe
space that POMDPs are operating in grows exponentially with the number of underlying states. This
is called the curse of dimensionality which means that working with problems with a realistic number
of states typically requires the use of approximate algorithms.

Karl Johan Astrém first described Markov decision processes with a discrete state space and
imperfect information in 1965 (Astrom 1965). The model was also studied by the operations research
community where the acronym POMDP was introduced (Smallwood and Sondik 1973). More recently,
the POMDP framework was adapted for automated planning problems in artificial intelligence
(Kaelbling, Littman, and Cassandra 1998). The POMDP framework is a popular choice when a known
Markov process can adequately approximate system dynamics and the reward function is known.
POMDPs have been successfully applied to model various real-world sequential decision processes.
Examples include numerous industrial, scientific, business, medical and military applications where

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

an optimal or near-optimal policy is needed. This includes important applications like machine
maintenance scheduling, computer vision, medical diagnosis, and many more. A detailed review of
applications can be found in (Cassandra 1998a).

While the (PO)MDP framework is used to find an optimal or near optimal policy, given a model of
system dynamics, the related class of model-free reinforcement learning algorithms, more specifically,
temporal difference learning, Q-learning and its deep learning variations (Sutton and Barto 2018), learn
unknown system dynamics and the reward function directly from interactions with the environment.
Reinforcement learning methods typically require observable states and perform a large amount of
exploration, where the agent performs sub-optimal actions to learn about the environment. Q-learning
and some algorithms are already available in R packages like ReinforcementLearning (Proellochs
and Feuerriegel 2020). While these model-free approaches are very powerful for many artificial
intelligence applications, they may not be appropriate for situations where experts already possess
a reasonable amount of knowledge about the system dynamics and where the cost of sub-optimal
actions is very high. For example, the cost of administering the wrong medication in a medical
setting due to exploration by a pure reinforcement learning approach may not be acceptable and a
model-based approach like a POMDP is more appropriate. The R package described in this paper
exclusively focuses on planning with POMDP.

While POMDPs are well studied, the complexity of solving all but very small problems limits
its application. Recent spectacular advances in artificial intelligence applications have lead to more
interest in POMDPs, as shown in the development of new approximate algorithms and by the
frameworks available for various programming languages:

¢ pomdp-solve (Cassandra 2015) is a C program to solve POMDDPs using exact and approximate
solvers.

e APPL (APPL Team 2022) provides the fast point-based POMDP solver SARSOP in C++.

¢ ZMDP software (Smith 2009) implements several approximate value iteration algorithms in
C++.

¢ pyPOMDP (Migge and Stollmann 2013) is a Python 2.x toolbox for solving POMDPs.

¢ JuliaPOMDP (JuliaPOMDP Team 2022) is a set of packages for defining and solving MDPs and
POMDPs using the Julia programming language.

R activity around POMDPs has also picked up with the packages sarsop (Boettiger, Ooms, and
Memarzadeh 2021) and pomdpSolve (Hahsler and Cassandra 2022) which interface the two popular
POMDP solver programs APPL and pomdp-solver.

In this paper, we present pomdp (Hahsler 2023) which was co-developed with pomdpSolve
(Hahsler and Cassandra 2022) to provide R users with a consistent and flexible infrastructure for
solving and working with POMDPs. The package can be used to work with larger POMDP problems
but is limited by the capability of the used solvers. Larger problems also typically lead to very
complicated policies which can be executed by an automatic agent but are not very helpful for a
human user. This paper focuses on features for smaller problems that yield simpler policies. Such
models and policies are better suited for human experts who want to understand the problem and
are interested in improved decision making. For example, a medical researcher who tries to develop
easy-to-follow guidelines for doctors based on experiments with a POMDP model is looking for a
relatively simple and robust model with a simple and understandable policy. This typically means to
consider a model with few states and a small number of different observations. For example, we have
used the package to study diabetes prevention by creating a very small, simplified model to obtain a
policy that is actionable in a primary care setting (Kamalzadeh et al. 2021). A second use of smaller
models is in a classroom or self-study setting where the pomdp package can be used to demonstrate
and study how POMDP models, solvers, and resulting policies work.

Background for partially observable Markov decision processes

A POMDP is a discrete-time stochastic control process that can formally be described by the 7-tuple
P - (S/ A/ T/ R/ Q/ O/ ’)’)/

where

S ={s1,82,...,5,} is the set of partially observable states of the environment,

A ={ay,ay,...,am} is the set of available actions,

T describes the system dynamics as the set of transition probabilities T(s' | s,a) the state
transition s — s’ conditioned on taking ion a.

R:Sx A xS — Ris the reward function which can depend on the

the state transition (previous and new state) and the action,

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=ReinforcementLearning
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

e O ={09,09,...,0;} is the set of possible observations,

* O defines the probabilistic connection of observations with the reached states s’ as the set of
observation probabilities O(o | 4,s") conditioned on the action a taken to reach s/, and

e v € [0,1] is the discount factor modeling how much the agent prefers immediate rewards over
later rewards.

The used notation follows largely (Kaelbling, Littman, and Cassandra 1998). Several variations of
this notation can be found in the literature. Sets are often set in calligraphic font and it is also common
to see the observation model denoted by Z instead of O.

The control process proceeds in discrete time steps called epochs as follows. At each time epoch f,
the environment is in some unknown state s € S. The agent chooses an action a € A, which causes
the environment to transition to state s’ € S with probability T(s" | s,a). Simultaneously, the agent
receives an observation o € (), which depends on the action and the new state of the environment
following the conditional probability distribution O(o | a,s’). Finally, the agent receives a reward
R(s,a,s") depending on the transition. This process repeats till a specified time horizon is reached.
Often, as in the equation below, an infinite horizon is used. The goal of the agent is to plan a policy
that prescribes actions that maximize the expected sum of discounted future rewards, i.e., she chooses
at each time t the action that maximizes

E

Yy “ytrt} ,
t=0

where r; = R(s, at,51.41) is the reward at epoch t which depends on the state transition and the
action at that time. Since state transitions are stochastic, the expectation is taken over all trajectories
that the process may take. Infinite horizon problems are guaranteed to converge if the discount factor
v < 1. For a finite time horizon, the expectation is calculated over the sum up to the end of the time
horizon and a discounted expected final reward (called terminal value) may be added in the final
epoch.

In a POMDP, the agent does not know the state the system is in, but it has to use observations
to form a belief of what states the system could be in. This belief is called a belief state b € B and is
represented in the form of a probability distribution over the states. B is the infinite set of all possible
belief states forming a |S| — 1 simplex. The agent starts with an initial belief by (often a uniform
distribution) and then updates the belief when new observations are available. In each epoch, after
observing o, the agent can perform a simple Bayesian update where the updated belief for being in
state s’ written as b/ (s') is

V' (s") =nO(ola,s") Y T(s'ls,a)b(s),

seS
and

1
77 Eoes (00000, Loes T s, a)b())
normalizes the new belief state so all probabilities add up to one.

Regular MDPs have (under some assumptions) a deterministic optimal policy that prescribes an
optimal action for each state (Puterman 1994). Even though the actual states are not observable for
POMDPs, POMDPs also have a deterministic optimal policy that prescribes an optimal action for
each belief state. A policy is a mapping 71 : B — A that prescribes for each belief state an action. The
optimal policy is given by

7* = argmax, V™ (by)

T, b0:| .

V7 (bg) is called the value function given policy 7 and the agent’s initial belief by € B. The
value function for any MDP or POMDP is a piecewise linear function that can be described by the
highest-reward segments of a set of intersecting hyperplanes. The parameters for these hyperplanes
are typically called a-vectors and are a compact way to specify both, the value function and the policy
of the solution of a problem.

with

(o)

Y. '

t=0

VT (by) = E

For the infinite-horizon case, the policy converges for v < 1 to a policy that is independent of the

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

time step and the initial belief. In this case, the policy can be visualized as a directed graph called the
policy graph. Each node of the graph is related to a hyperplane and represents the part of the belief
space where this hyperplane produces the highest reward in the value function. Each node is labeled
with the action to be taken given by the policy. The outgoing edges are labeled with observations and
specify to what segment of the value function the agent will transition given the previous segment,
the action and the observation. The formulation can be easily extended to the finite-horizon case.
However, the finite-horizon policy depends on the initial belief and the epoch. The finite-horizon
policy forms a policy tree, where each level represents an epoch.

It has to be mentioned that finding optimal policies for POMDPs is known to be a prohibitively
difficult problem because the belief space grows exponentially with the number of states. This issue is
called the curse of dimensionality in dynamic programming. Mundenk (Mundhenk 2000) has shown that
finding the optimal policy for POMDPs is, in general, an NP""-complete problem which means that it
is at least as difficult as the hardest problems in NP. Therefore, exact algorithms can be only used for
extremely small problems that are typically of very limited use in practice. More useful algorithms fall
into the classes of approximate value iteration and approximate policy iteration (Cassandra 1998b;
Hauskrecht 2000), which often find good solutions for larger problems. To use POMDPs successfully,
the researcher typically needs to experiment with simplifying the problem description and choosing
an acceptable level of approximation by the algorithm.

The solution of POMDPs can be used to guide the agent’s actions. Automatic agents can follow
very complicated policies. Humans often prefer simpler policies, even if they are not optimal but good
enough to robustly improve outcomes. Simpler policies also result from problem simplification and
allowing for a larger degree of approximation by the solver algorithm.

Implementation

Package pomdp includes a convenient and consistent way for users to define all components of a
POMDP model using familiar R syntax, solve the problem using several methods and then analyze
and visualize the results. An important design decision is to separate the tasks of defining a problem
and analyzing the policy from the actual solver. The separation between the infrastructure in package
pomdp and the solver code makes sure that additional solvers can be easily added in the future. Solver
code is typically interfaced by writing a standard problem definition file, running an external process,
and reading the results back. This way of interfacing solvers has several advantages:

¢ Using an external process, rather than directly interfacing the code in R ensures that memory
issues for larger problems do not compromise the running R process itself.

* The separation lets the solver use any available parallelization technique without imposing
limitations by R.

* Most existing solver software accepts a standard problem definition file format.

* The problem definition and the results are typically very small and fast to write and read
compared to the significant amount of time used by the solver.

* Separating problem definition and result analysis from the actual solver lets the user solve larger
problems on a dedicated server.

For communication with the solver, the package supports the widely used POMDP (Cassandra
2015) file specification and can use POMDPX files (APPL Team 2022) via package sarsop. This means
that new algorithms that use these formats can be easily interfaced in the future, and that problems
already formulated in these formats can be directly solved using the package. The authors also provide
an initial set of solvers with the companion package pomdpSolve which provides an easy-to-install
distribution of the well-known fast C implementation of a set of solvers originally developed by one
of the co-authors (Cassandra 2015). The package pomdp currently provides access to the following
algorithms:

¢ Exact value iteration

Enumeration algorithm (Sondik 1971; Monahan 1982).

Two pass algorithm (Sondik 1971).

Witness algorithm (Littman, Cassandra, and Kaelbling 1995).

Incremental pruning algorithm (Zhang and Liu 1996; Cassandra, Littman, and Zhang
1997).

* Approximate value iteration

— Finite grid algorithm (Cassandra 2015), a variation of point-based value iteration to solve
larger POMDPs (PBVT; see (Pineau, Gordon, and Thrun 2003)) without dynamic belief set
expansion.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

— SARSOP (Kurniawati, Hsu, and Lee 2008), Successive Approximations of the Reachable
Space under Optimal Policies, a point-based algorithm that approximates optimally reach-
able belief spaces for infinite-horizon problems (via the third-party R package sarsop
(Boettiger, Ooms, and Memarzadeh 2021)).

While exact methods can only solve very small problems, PBVI and SARSOP can efficiently
find approximate solutions for larger problems with thousands of states and hundreds of different
observations. pomdp uses by default the finite grid algorithm.

The pomdp package provides efficient support by using

* sparse matrix representation based on the Matrix package (Bates, Maechler, and Jagan 2022) for
large transition and observation matrices of low density,

fast matrix operations,

fast C++ implementations of loops using Rcpp (Eddelbuettel 2013), and

parallel execution using foreach (Microsoft and Weston 2022).

The package implements many auxiliary functions to analyze and visualize POMDPs and their
solution. For example, to sample from the belief space, simulate trajectories through a POMDP and
estimate beliefs, fast C++ implementations (using Repp (Eddelbuettel 2013)) and support for parallel
execution using foreach (Microsoft and Weston 2022) are provided. To represent and visualize policy
graphs the widely used and powerful igraph package (Csardi and Nepusz 2006) with its advanced
layout options is used. Interactive policy graphs can be produced based on the visNetwork (Almende
B.V. and Contributors and Thieurmel 2022). While the package does not directly provide functions to
create ggplot2 visualizations (Wickham 2016) to avoid installing the large number of packages needed,
the manual pages provide examples.

Solving a new POMDP problem with the pomdp package consists of the following steps:

1. Define a POMDP problem using the creator function POMDP () using R syntax,

2. solve the problem using solve_POMDP () which calls an external solver, and

3. analyze and visualize the results with functions like reward(), plot_policy_graph(), and
plot_value_function().

We will now discuss these steps in more detail and then present the complete code for a small toy
example.

Defining a POMDP problem

The POMDP () creator function has as its arguments the 7-tuple (S, A, T, R, Q, O, y), the time horizon
with terminal values, the initial belief state by and a name for the model. Default values are an infinite
time horizon (which has no terminal values), and an initial belief state given by a uniform distribution
over all states.

While specifying most parts of the POMDP is straightforward, some arguments can be specified
for convenience in several different ways. Transition probabilities, observation probabilities and the
reward function can be specified in several ways:

* A named list of dense or sparse matrices or the keywords "identity” and "uniform” represent-
ing the probabilities or rewards organized by action.

* Asadata.frame representing a table with states, actions and the probabilities or reward values
created with the helper functions

— T_(action, start.state, end.state, probability),
— O_(action, end.state, observation, probability) and
— R_(action, start.state, end.state, observation, value).

NA is used to mean that a value applies to all actions, states or observations.

* An R function with the same arguments as T_(), 0_() or R_() that returns the probability or
reward.

More details can be found in the manual page for the constructor function POMDP().

Accessing Model Data

Several parts of the POMDP description can be defined in different ways. In particular, transition
probabilities, observation probabilities, rewards, and the start belief can be defined using dense

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=visNetwork
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

matrices, sparse matrices, data frames, functions, keywords or a mixture of all of these. The decision
to specify different parts of the description using different formats is typically a result of how it is
easier for the user to specify the part of the model. For example, transition and observation matrices
can typically be represented efficiently as sparse matrices and the keywords uniformand identity,
while rewards are typically more compactly specified as a data frame with rows describing the reward
for a subset of action/state/observation combinations.

To write code that performs computation using this information requires a way to access the data
in a unified way. The package provides accessor functions like:

* start_vector() translates the initial probability vector description into a numeric vector.

e Transition probabilities, observation probabilities, and rewards can be accessed using functions
ending in _matrix(). Given an action, a matrix is returned. The user can request a dense or
sparse matrix using the logical parameter sparse. To reduce the overhead associated with
representing dense matrices in sparse format, sparse matrices are only returned if the density of
the matrix is below 50%. The user can also specify sparse = NULL, which will return the data
in the way it was specified by the user (e.g., a data frame). This saves the cost of conversion.
Functions ending in _val() can be used to access individual values directly.

To allow a user-implemented algorithm direct access to the data in a uniform way, the function
normalize_POMDP() can be used to create a new POMDP definition where transition probabilities,
observation probabilities, rewards, and the start belief are consistently translated to (lists of) matrices
and numeric vectors. Similar access facilities for C++ developers are also available in the package
source code.

Solving a POMDP

POMDP problems are solved with the function solve_POMDP(). This function uses the low-level
interface in the companion package pomdpSolve to solve a pomdp using the pomdp-solve software
and return a solved instance of the POMDP problem. Since the low-level interfaces vary between
solvers, pomdp will provide additional functions for other popular solvers. For example, for using the
SARSOP solver interfaced in package sarsop, a function solve_SARSOP () is provided.

Solving POMDDPs is often done by trial-and-error while simplifying the problem description to
make it tractable. This means that we need to be able to interrupt the solver when it is running too long
or when it runs out of memory. To accomplish this, the problem is transferred to the solver by writing
a POMDP or POMDPX file, the solver software is then run in a separate process, and the results are
read back. This approach results in a more robust interface since the R process is not compromised
by a solver that runs out of memory or is interrupted due to too long run time. However, note that
writing a large problem description file can be quite slow.

The solve_POMDP () and solve_SARSOP() functions require a POMDP model and then allow the
user to specify or overwrite model parameters that are often used in experimentation like the horizon,
the discount rate, and the initial belief state. Additionally, solver-specific parameters like the used
algorithm for pomdp-solve can also be specified.

Analyzing the solution

The function solve_POMDP() returns a solved instance of the POMDP as a list that contains the original
problem definition and an additional element containing the solution including if the solution has
converged, the total expected reward given the initial belief, and the a-vectors representing the value
function V™ and the policy 7. Keeping the problem definition and the solution together allows the
user to resolve an already solved problem multiple times experimenting with different initial beliefs,
horizons or discount rates, and also to perform analysis that requires both the problem definition and
the solution.

An example of such an analysis is to simulate trajectories for a solved POMDP by following an
e-greedy policy. An e-greedy policy follows the policy given in the solution but with a probability of €
uses a random action instead, which can lead to exploring parts of the belief space that would not
be reached by using only the policy. Such a simulation needs access to the policy in the solution but
also to the original problem description (transaction and observation probabilities). This simulation
is implemented in function simulate_POMDP() and includes fast C++ code using Rcpp (Eddelbuettel
2013) and a native R implementation supporting sparse matrix representation and sparse matrix
operations. Both implementations support parallelization using foreach (Microsoft and Weston 2022)
to speed up the simulation.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=foreach

CONTRIBUTED RESEARCH ARTICLE

Often it is also interesting to test the robustness of a policy on slightly modified problem descrip-
tions or to test the performance of a manually created policy. These experiments are supported using
function add_policy() which provides a convenient way to combine POMDP problem descriptions
with compatible policies.

While the list elements of the solution can be directly accessed, several convenient access and
visualization functions are provided. We provide a plot_value_function() that visualizes the piece-
wise linear value function giving the reward over the belief space simplex as a line chart for two-state
problems. Function plot_belief_space() provides a more flexible visualization of the reward, the
policy-based action, or the policy graph node over the whole belief space. A three-state problem has a
belief space of the form of a 2-simplex which is a triangle and the visualization uses a ternary plot.
The belief space from more than three states cannot be directly visualized, however, projections can be
visualized by fixing the probabilities for all but two or three states.

The function policy() returns the policy as a table (data frame) consisting of one row for each
value function segment with the a-vector and the prescribed action as the last column. If the policy
depends on the epoch, then a list of tables is returned, one for each epoch. If the policy corresponds to
a realizable conditional control plan, then the policy can also be converted into an igraph object using
the function policy_graph() and visualized using the function plot_policy_graph(). The policy
graph shows the prescribed actions and how observations change the agent’s belief state. This is often
very useful for understanding the policy. For general finite-horizon policies, the policy graph is a
policy tree where each level in the tree represents successive epochs. Such trees are often too large
to visualize directly, but the igraph object can be used in many advanced R packages for network
analysis or exported for analysis with external tools.

Further, individual belief updates, the optimal action and the expected reward given a belief can
be calculated using update_belief (), optimal_action(), and reward(). Together with the unified
accessor functions and the POMDP specifications, the user can use these functions to implement more
sophisticated R-based analysis. The source package also contains C++ implementations of these and
the accessor functions. These can be used by an advanced R developer to write fast analysis code or
implement custom solvers.

Time-dependent POMDPs

For some real-world problems, the transition probabilities, observation probabilities, or rewards may
change depending on the epoch. For example, in a medical application, the transition probability
modeling the chance of getting an infection may increase with the age of the patient. While the
general definition of POMDPs can be easily extended to allow time-dependent transition probabilities,
observation probabilities and reward functions to model changes in the modeled system, most existing
solvers use fixed matrices.

The package pomdp adds a simple mechanism to support time dependence. Time dependence
of transition probabilities, observation probabilities and the reward structure can be modeled by
considering a set of episodes representing epochs with the same settings and then solving these
episodes in reverse order with the accumulated discounted reward of each episode used as the final
reward for the preceding episode. Details on how to specify episodes in time-dependent POMDPs can
be found in the pomdp manual pages.

Toy Example: The Tiger problem

We will demonstrate how to use the package with a popular toy problem called the Tiger Problem
(Cassandra, Kaelbling, and Littman 1994). This example is often used to introduce students to POMDPs.
The problem is defined as:

An agent is facing two closed doors, and a tiger is put with equal probability behind one of the
two doors represented by the environment states tiger-left and tiger-right while treasure is put
behind the other door. The available actions are listen for tiger noises or opening a door (actions
open-left and open-right). Listening is neither free (the action has a reward of -1) nor is it entirely
accurate. There is a 15% probability that the agent hears the tiger behind the left door while it is behind
the right door and vice versa. If the agent opens the door with the tiger, it will get hurt (a reward of
-100), but if it opens the door with the treasure, it will receive a positive reward of 10. After a door is
opened, the problem resets (i.e., the tiger is again randomly assigned to a door), and the agent gets
another try. This makes it an infinite horizon problem and we use a discount factor of .75 to guarantee
convergence.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

Specifying the Tiger problem
The problem can be specified using the function POMDP ().
library("pomdp")

Tiger <- POMDP(

name = "Tiger Problem”,

discount = 0.75,

states = c("tiger-left” , "tiger-right"),

actions = c("listen”, "open-left"”, "open-right"),
observations = c("tiger-left”, "tiger-right"),
start = "uniform”,

transition_prob = list(

"listen" = "identity"”,
"open-left” = "uniform”,
"open-right"” = "uniform”),

observation_prob = list(
"listen"” = matrix(c(0.85, ©.15, @.15, 0.85), nrow = 2, byrow = TRUE),
"open-left” = "uniform”,
"open-right” = "uniform”),

reward = rbind(

R_("listen”, NA, NA, NA, -1),
R_("open-left”, "tiger-left”, NA , NA, -100),
R_("open-left”, "tiger-right"”, NA , NA, 10),

R_("open-right"”, "tiger-left”, NA , NA, 10),
R_("open-right"”, "tiger-right”, NA |, NA, -100)

Note that we use for each component the most convenient specification method. For observations
and transitions, we use a list of distribution keywords and a matrix, while for the rewards, a data frame
created with the R_() function is used. The R_() function accepts the arguments action, start.state,
end.state, observation, and the reward value. A missing value of NA indicates that the reward is
valid for any state or observation.

The transition model can be visualized as a graph.
g <- transition_graph(Tiger)

library(igraph)

plot(g,

layout = rbind(c(-1, @), c(1, @)), rescale = FALSE,
edge.curved = curve_multiple_directed(g, .8),
edge.loop.angle = pi / 2,

vertex.size = 65

)

The vertices in Figure 1 represent the states and the edges show transitions labeled with actions
and the associated transition probabilities in parentheses. Multiple parallel transitions are collapsed
into a single arrow with several labels to simplify the visualization. The graph shows that the action
listen stays with a probability of 1 in the same state (i.e., listening does not move the tiger). The
actions open-left and open-right lead to a reset of the problem which assigns the tiger randomly to
a state. This is represented by the transitions with a probability of .5.

For more complicated transition models, individual graphs for each action or interactive graphs
using visNetwork can also be plotted.

Solving the Tiger problem for an infinite time horizon
To solve the problem, we use the default method (pomdp-solve’s finite grid method interfaced in

package pomdpSolve) which performs a form of point-based value iteration that can find approximate
solutions for larger problems.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=visNetwork
https://CRAN.R-project.org/package=pomdpSolve

CONTRIBUTED RESEARCH ARTICLE

open-left(0-5)/
open-=right (0.5)

open-left(0.5)/
open-right (0.5)

listen (1)/ listen (1)/
open-left (0.5)/ open-left (0.5)/
open-right (0.5) open-right (0.5)

Figure 1: Transition model of the Tiger problem.

sol <- solve_POMDP(Tiger)

sol

#> POMDP, list - Tiger Problem

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Discount factor: 0.75
Horizon: Inf epochs
Size: 2 states / 3 actions / 2 obs.
Start: 0.5, 0.5
Normalized: TRUE
Solved:
Method: grid
Solution converged: TRUE
of alpha vectors: 5
Total expected reward: 1.933439

List components: 'name', 'discount', 'horizon', 'states', 'actions',
'observations', 'transition_prob', 'observation_prob', 'reward',
'start', 'normalized', 'solution'

The solver returns an object of class POMDP, which contains the solution as an additional list
component. The print function displays important information like the used discount factor, the
horizon, if the solution has converged and the total expected reward. In this case, the total expected
discounted reward for following the policy starting from the initial belief is 1.933. Note that the
optimal policy for infinite-horizon does not depend on the initial belief. The reward for other initial
beliefs can be calculated using the reward() function. For example, the expected reward for a correct

belief that the tiger starts to the left with a probability of 90% is:

reward(sol, belief = c(0.9, 0.1))

#>

[1] 4.779814

Inspecting the Policy

The policy of a solved POMDP is a set of a-vectors representing a segment of the value function and

the associated best action.

policy(sol)

The R Journal Vol. XX/YY, AAAA 20ZZ

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

10

Belief

m tiger—left
m tiger-right
tiger=left

tiger—left/

tiger—right tiger-left

tigerrright

tiger=left

tiger=right

tiger—left/
tigerrright

tiger—right

Figure 2: The policy graph for the converged infinite-horizon solution of the Tiger problem.

[[1]]

#> tiger-left tiger-right action
#> 1 -98.549921 11.450079 open-left
#> 2 -10.854299 6.516937 listen
#> 3 1.933439 1.933439 listen
#> 4 6.516937 -10.854299 listen

#> 5 11.450079 -98.549921 open-right

The returned policy is a list where each element represents the a-vectors for an epoch. The policy
above has only one list element since the solution converged to a solution that is independent of the
epoch.

Smaller policies that correspond to a conditional plan can also be represented as a graph using a
custom plot function.

plot_policy_graph(sol)

The function uses the igraph package (Csardi and Nepusz 2006) to produce the layout. Figure 2
shows the graph for the optimal policy returned by the solver for the Tiger problem. Each node in
the policy graph represents an a-vector and is labeled by the action prescribed by the policy. Each
segment covers a part of the belief space which represents how much the agent knows about the
location of the tiger based on all previous observations. We use a pie chart inside each node to
show a representative belief point that belongs to the segment. This makes it easier to compare the
beliefs in different nodes with each other. The representative belief points are found with the function
estimate_belief_for_nodes() which uses the solver output and searches along policy trajectories.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLE

11

20

7 Action
— 1: open-left
0 _| — 2 I!sten
- — 3: listen
= — 4. listen
§ o | 5: open-right
> —
@
~
m —]
- - /
I I
tiger—left tiger-right

Belief space

Figure 3: The value function for the solution of the converged Tiger problem.

It is easy to interpret smaller policy graphs. Figure 2 shows that without prior information, the
agent starts at the node marked with initial belief. In this case, the agent believes there is a 50/50
chance that the tiger is behind either door. The optimal action is displayed inside the state and, in this
case, is to listen. The arcs are labeled with observations. Let us assume that the observation is tiger-left.
The agent follows the appropriate arc and ends in a node representing the new range of belief states
with a higher probability of the tiger being to the left. However, the optimal action is still to listen. If
the agent again hears the tiger on the left then it ends up in a node that has a belief of close to 100%
that the tiger is to the left and open-right is the optimal action. The arcs back from the nodes with the
open actions to the initial state reset the problem and let the agent start over.

Typically, small and compact policy graphs are preferable in practice because they make the policy
easier to understand for the decision maker and also easier to follow. For large, more complicated
policy graphs, representation as a graph is difficult leading to issues with node layout and too many
crossing vertices. The package can also plot the graph as an interactive HTML widget with movable
vertices (see the manual page for plot_policy_graph()) to let the user arrange the graph manually.
Larger policy graphs can also be exported in common formats like graphML to be displayed and
analyzed in large-scale network analysis tools like Gephi (Jacomy et al. 2014).

The Tiger problem environment has only two states (tiger-left and tiger-right) with a belief space
forming a 1-simplex which is a line going from a probability of 1 that the tiger is left to a probability of
1 that the tiger is right. Therefore, we can visualize the piecewise linear convex value function as a
simple line chart with the belief on the x-axis.

plot_value_function(sol, ylim = c(90,20))

Figure 3 shows the value function. The x-axis represents the belief, the lines represent the nodes
in the policy graph (the numbers in the legend match the numbers in the graph in Figure 3), and the
piecewise linear value function consists of the line segments with the highest reward. The optimal
action for each segment is shown in the legend. This visualization function is mostly provided to
study small textbook examples with two states. A more versatile function is plot_belief_space()
which can produce ternary plots for problems with three or more states by projecting the belief space
on three states.

Auxiliary functions provided in the package let the user perform many analyses. For example,
we simulate trajectories through the POMDP belief space by following the policy and estimating the
distribution of the agent’s belief.

sim <- simulate_POMDP(sol, n = 50, horizon = 5,

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

12

N .
- action
o _| e listen
! * open-left
o * open-right
P
2 ©
a
< | I
- |
o ; |
| | |
tiger—left tiger-right
Belief

Figure 4: Belief states reached in 50 simulated trajectories of horizon 5.

belief = c(.5, .5), return_beliefs = TRUE)

plot_belief_space(sol, sample = sim$belief_states, ylim

jitter = 5)

lines(density(sim$belief_states[, 11, bw = .01, from

axis(2); title(ylab = "Density")

c(o, 12),

Q0 , to=1))

Figure 4 shows the five beliefs that are reached in the trajectories as dots and uses jitter and a
density estimate to show how much time the agent has spent in the simulation in different parts of the
belief space. The color of the dots indicates the actions chosen by the policy.

Solving the Tiger problem for a finite time horizon

To demonstrate how to solve a POMDP problem with a finite time horizon, we set the horizon to 4

epochs, which means that the agent starts with its initial belief and can perform only four actions.

The grid-based method used before finds the optimal policy, but for finite time horizon problems
with negative rewards, the value function and the calculated expected reward is only valid when the
solution converges. To avoid this issue, we use here the incremental pruning algorithm (Zhang and

Liu 1996; Cassandra, Littman, and Zhang 1997).

sol <- solve_POMDP(model = Tiger, horizon = 4, method = "incprune")

sol

#> POMDP, list - Tiger Problem

#> Discount factor: 0.75

#> Horizon: 4 epochs

#> Size: 2 states / 3 actions / 2 obs.
#> Start: 0.5, 0.5

#> Normalized: TRUE

#> Solved:

#> Method: incprune

#> Solution converged: FALSE

#> # of alpha vectors: 26

#> Total expected reward: 0.483125
#>

#> List components: 'name', 'discount',

The R Journal Vol. XX/YY, AAAA 20ZZ

'horizon',

'actions',

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

13

#> 'observations', 'transition_prob', 'observation_prob', 'reward',
#> 'start', 'normalized', 'solution'
policy(sol)

[[1]]

#> tiger-left tiger-right action
#> 1 -99.321250 10.678750 open-left
#> 2 -11.820719 4.640094 listen
#> 3 -2.734955 2.600990 listen
#> 4 -1.137420 1.595135 listen
#> 5 0.483125 0.483125 listen
#> 6 1.595135 -1.137420 listen
#> 7 2.600990 -2.734955 listen
#> 8 4.640094 -11.820719 listen
#> 9 10.678750 -99.321250 open-right
#>

[[2]]

#> tiger-left tiger-right action
#> 1 -101.312500 8.687500 open-left
#> 2 -20.550156 5.488906 listen
#> 3 -13.450000 4.700000 listen
#> 4 -3.565469 2.157969 listen
#> 5 0.905000 0.905000 listen
#> 6 2.157969 -3.565469 listen
#> 7 4.700000 -13.450000 listen
#> 8 5.488906 -20.550156 listen
#> 9 8.687500 -101.312500 open-right
#>

[[3]]

#> tiger-left tiger-right action
#> 1 -100.7500 9.2500 open-left
#> 2 -12.8875 5.2625 listen
#> 3 -1.7500 -1.7500 listen
#> 4 5.2625 -12.8875 listen
#> 5 9.2500 -100.7500 open-right
#>

#> [[4]]

#> tiger-left tiger-right action
#> 1 -100 10 open-left
#> 2 -1 -1 listen
#> 3 10 -100 open-right

The policy has four elements, one for each epoch. Is easier to understand the policy by visualizing
it as a graph.

plot_policy_graph(sol)

The resulting policy graph is shown in Figure 5 as a tree with four levels, one for each time epoch.
The plot function automatically uses a tree layout and adds the epoch as the first number to the node
labels. By default, it also simplifies the representation by hiding belief states which cannot be reached
form the start belief and, therefore, there are more entries in the policy above than there are nodes
in the graph. The root node of the tree represents the initial belief used in the model. The model
starts with a uniform initial belief represented by the evenly split pie chart. The policy shows that
the optimal strategy is to listen and open a door only if we hear the tiger behind the same door twice.
Interestingly, it is optimal never to open a door in the last epoch. The reason is that we cannot reach
a sufficiently high belief of the tiger being behind a single door. The expected reward of this policy
starting at a uniform initial belief is 0.483.

Policy trees for finite-horizon problems are dependent on the agent’s initial belief. To show this,
we produce a new policy tree for an initial belief of 99% that the tiger is to the left by overwriting the
initial belief in the model definition.

sol <- solve_POMDP(model = Tiger, horizon = 4,

initial_belief = ¢(.99, .01), method = "incprune")
reward(sol, belief = c(.99, .01))

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

14

Belief

m tiger—left
m tiger-right

Figure 5: Policy tree for the Tiger problem solved with a horizon of 4 and a uniform initial belief.

The R Journal Vol. XX/YY, AAAA 2077 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

15

Belief
u tiger—left
m tiger-right
tiger—left/
tiger—right
tiger=left tiger<right
tiger—left

tiger~right tiger—left tiger-right

Figure 6: Policy tree for the Tiger problem solved with a horizon of 4 and an initial belief of 99 percent
that the tiger is to the left.

#> [1] 9.57875
plot_policy_graph(sol, belief = c¢(.99, .01))

The resulting policy graph with an initial belief indicating that we are very sure that the tiger is to
the left is shown in Figure 6. The graph indicates that it is optimal to open the right door right away
and then wait if we hear the tiger twice in the same location before we open the other door. Under the
strong belief, the agent also expects a much higher reward of 9.579 for the optimal policy.

Summary

Partially observable Markov decision processes are an important modeling technique useful for
many applications. Easily accessible software to solve POMDP problems is crucial to support applied
research and instruction in fields including artificial intelligence and operations research. Most existing

libraries need advanced technical expertise to install and offer minimal support to analyze the results.

The pomdp package fills this gap by providing an easily accessible platform to perform experiments
and analyze POMDP problems and the resulting policies.

This paper used a minimalist toy example to show the functionality of the package in a concise
way. Studying and visualizing complicated policies with hundreds or thousands of belief states is an
important topic that has received less attention than improving solver algorithms. R provides a wide
range of tools to compare, analyze, and cluster belief states. We plan to investigate the use of these

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=pomdp

CONTRIBUTED RESEARCH ARTICLE

16

techniques to support explainability of more complicated policies and will implement corresponding
functions in future releases of the package pomdp.

Acknowledgments

Farzad Kamalzadeh participated in the development of an early version of the pomdp package and
used it for several applications. He was supported by a Graduate Fellowship and a Niemi Center
Fellowship, both at SMU. His and Michael Hahsler’s work was also supported in part by the National
Institute of Standards and Technology (NIST) under grant number 60NANB17D180.

The authors would also like to thank Carl Boettiger for maintaining the package sarsop and the
anonymous reviewers for their valuable insights.

References

Almende B.V. and Contributors, and Benoit Thieurmel. 2022. visNetwork: Network Visualization Using
"Vis.js” Library. https://CRAN.R-project.org/package=visNetwork.

APPL Team. 2022. “APPL: Approximate POMDP Planning Toolkit.” https://bighird.comp.nus.edu.
sg/pmwiki/farm/appl/.

Astrém, K. J. 1965. “Optimal Control of Markov Processes with Incomplete State Information.” Journal
of Mathematical Analysis and Applications 10 (1): 174-205.

Bates, Douglas, Martin Maechler, and Mikael Jagan. 2022. Matrix: Sparse and Dense Matrix Classes and
Methods. https://CRAN.R-project.org/package=Matrix.

Boettiger, Carl, Jeroen Ooms, and Milad Memarzadeh. 2021. Sarsop: Approximate POMDP Planning
Software. https://CRAN.R-project.org/package=sarsop.

Cassandra, Anthony R. 1998a. “A Survey of POMDP Applications.” MCC-INSL-111-98. Microelec-
tronics; Computer Technology Corporation (MCC).

. 1998b. “Exact and Approximate Algorithms for Partially Observable Markov Decision Pro-

cesses.” PhD thesis, Providence, RI, USA: Brown University.

. 2015. “The POMDP Page.” https://www.pomdp.org.

Cassandra, Anthony R., Leslie Pack Kaelbling, and Michael L. Littman. 1994. “Acting Optimally
in Partially Observable Stochastic Domains.” In Proceedings of the Twelfth National Conference on
Artificial Intelligence. Seattle, WA.

Cassandra, Anthony R., Michael L. Littman, and Nevin Lianwen Zhang. 1997. “Incremental Pruning;:
A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes.” In UAI'97:
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 54--61.

Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network
Research.” InterJournal Complex Systems: 1695. https://igraph.org.

Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer. https:
//doi.org/10.1007/978-1-4614-6868-4.

Hahsler, Michael. 2023. Pomdp: Infrastructure for Partially Observable Markov Decision Processes (POMDP).
https://github.com/mhahsler/pomdp.

Hahsler, Michael, and Anthony R. Cassandra. 2022. pomdpSolve: Interface to "Pomdp-Solve’ for Partially
Observable Markov Decision Processes. https://github.com/mhahsler/pomdpSolve.

Hauskrecht, Milos. 2000. “Value-Function Approximations for POMDPs.” Journal Of Artificial
Intelligence Research 13: 33-94. https:/ /doi.org/https://doi.org/10.1613/jair.678.

Jacomy, Mathieu, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. 2014. “ForceAtlas2,
a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi
Software.” PLOS ONE 9 (6): 1-12. https://doi.org/10.1371/journal .pone.0098679.

JuliaPOMDP Team. 2022. “JuliaPOMDP: POMDP Packages for Julia.” https://github.com/JuliaPOMDP.

Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra. 1998. “Planning and Acting in
Partially Observable Stochastic Domains.” Artificial Intelligence 101 (1): 99-134. https://doi.org/
10.1016/S0004-3702(98)00023-X.

Kamalzadeh, Farzad, Vishal Ahuja, Michael Hahsler, and Michael E. Bowen. 2021. “An Analytics-
Driven Approach for Optimal Individualized Diabetes Screening.” Production and Operations
Management 30 (9): 3161-91. https://doi.org/10.1111/poms.13422.

Kurniawati, Hanna, David Hsu, and Wee Sun Lee. 2008. “SARSOP: Efficient Point-Based POMDP
Planning by Approximating Optimally Reachable Belief Spaces.” In In Proc. Robotics: Science and
Systems.

Littman, Michael L., Anthony R. Cassandra, and Leslie Pack Kaelbling. 1995. “Learning Policies
for Partially Observable Environments: Scaling Up.” In Proceedings of the Twelfth International
Conference on International Conference on Machine Learning, 362-70. ICML'95. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=visNetwork
https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=sarsop
https://www.pomdp.org
https://igraph.org
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://github.com/mhahsler/pomdp
https://github.com/mhahsler/pomdpSolve
https://doi.org/10.1613/jair.678
https://doi.org/10.1371/journal.pone.0098679
https://github.com/JuliaPOMDP
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1111/poms.13422

CONTRIBUTED RESEARCH ARTICLE

17

Microsoft, and Steve Weston. 2022. Foreach: Provides Foreach Looping Construct. https://CRAN.R-
project.org/package=foreach.

Migge, Bastian, and Oliver Stollmann. 2013. “pyPOMDP: POMDP Implementation in Python.”
https://bitbucket.org/bami/pypomdp/src/master/.

Monahan, G. E. 1982. “A Survey of Partially Observable Markov Decision Processes: Theory, Models,
and Algorithms.” Management Science 28 (1): 1-16.

Mundhenk, Martin. 2000. “The Complexity of Optimal Small Policies.” Math. Oper. Res. 25 (1): 118-29.

Pineau, Joelle, Geoff Gordon, and Sebastian Thrun. 2003. “Point-Based Value Iteration: An Any-
time Algorithm for POMDPs.” In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, 1025-30. IJCAI’03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Proellochs, Nicolas, and Stefan Feuerriegel. 2020. ReinforcementLearning: Model-Free Reinforcement
Learning. https://CRAN.R-project.org/package=ReinforcementlLearning.

Puterman, Martin L. 1994. “Markov Decision Processes: Discrete Stochastic Dynamic Programming.”
In Wiley Series in Probability and Statistics.

Smallwood, R. D., and E. J. Sondik. 1973. “The Optimal Control of Partially Observable Markov
Decision Processes over a Finite Horizon.” Operations Research 21 (5): 1071-88.

Smith, T. 2009. “ZMDP: Software for POMDP and MDP Planning.” https://github.com/treyo/zmdp.

Sondik, E. J. 1971. “The Optimal Control of Partially Observable Markov Decision Processes.” PhD
thesis, Stanford, California.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. Second. The
MIT Press.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org.

Zhang, Nevin L., and Wenju Liu. 1996. “Planning in Stochastic Domains: Problem Characteristics and
Approximation.” HKUST-CS96-31. Hong Kong University.

’

Michael Hahsler

Southern Methodist University
Department of Computer Science
Dallas, TX, USA
https://michael.hahsler.net
ORCiD: 0000-0003-2716-1405
mhahsler@lyle.smu.edu

Anthony R. Cassandra
POMDP, Inc

Austin, TX, USA
https://tonycassandra.com
tony.cassandra@gmail.com

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://bitbucket.org/bami/pypomdp/src/master/
https://CRAN.R-project.org/package=ReinforcementLearning
https://github.com/trey0/zmdp
https://ggplot2.tidyverse.org
https://michael.hahsler.net
https://orcid.org/0000-0003-2716-1405
mailto:mhahsler@lyle.smu.edu
https://tonycassandra.com
mailto:tony.cassandra@gmail.com

	Pomdp: A Computational Infrastructure for Partially Observable Markov Decision Processes
	Introduction
	Background for partially observable Markov decision processes
	Implementation
	Defining a POMDP problem
	Accessing Model Data
	Solving a POMDP
	Analyzing the solution
	Time-dependent POMDPs

	Toy Example: The Tiger problem
	Specifying the Tiger problem
	Solving the Tiger problem for an infinite time horizon
	Inspecting the Policy
	Solving the Tiger problem for a finite time horizon

	Summary
	Acknowledgments
	References

