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ABSTRACT 

It is widely accepted that existing knowledge about the structure 
of many biological pathways is incomplete, and that uncovering 
missing proteins in a biological pathway can help guide targeted 
therapy, drug design, and drug discovery. Current approaches 
address the complex/pathway membership problem through 
identifying potentially missing proteins using probabilistic 
protein-protein interaction (PPI) networks. In this paper, we 
extend the idea of the pathway membership problem and define 
the pathway completion problem. In addition to finding possible 
protein candidates, this problem requires predicting the locations 
and connections of these proteins within a given incomplete 
pathway. We propose the use of network motifs to tackle the 
pathway completion problem. We present an algorithm which 
breaks down an incomplete pathway into a set of constituent 
motifs. The algorithm utilizes the proteins retrieved from a 
probabilistic PPI network to improve the motifs. Furthermore, our 
approach has the potential to improve solutions to the 
membership problem by better exploiting the local structures 
represented by network motifs. These new ideas are illustrated 
with a set of preliminary experiments. 

Categories and Subject Descriptors 

J.3 [Life and Medical Science]: Biology and Genetics. 

General Terms 

Algorithms, Experimentation. 

Keywords 

Pathway completion; network motifs; local structures; protein 
networks; pathway membership. 

1. INTRODUCTION 
Interactions among proteins accentuate many biological processes 
that are essential in providing functional and organizational 

support to any given organism. Studying and analyzing these 
interactions can pave the way to understanding diseases and their 
primary causes [3, 7]. Consequently, there is a push to advance 
the area of protein and protein interaction discovery, yet the 
knowledge of protein interactions is not complete [7, 4]. 

Since protein interactions underlie the complex biological models 
and functions of organisms, it is best to analyze these interactions 
in the context of a network of interacting proteins. This analysis is 
contrary to studying pair-wise interactions in isolation. In a 
protein-protein interaction (PPI) network, each node represents a 
protein and each edge represents an interaction between two 
proteins. A probabilistic PPI network is essentially a PPI network 
with weights on the edges. Each weight represents the probability 
of interaction among two proteins. Probabilistic PPI and PPI 
networks are utilized in a variety of areas to gain biological 
knowledge. Such areas include complex/pathway membership [2, 
6, 7], predicting and assigning protein function and regulation 
[18], and pathway discovery [5]. 

Two or more interacting proteins bind together to form a protein 
complex. Biological pathways “are distinct, experimentally-
validated sub-networks of proteins within the larger PPI network 
that interact with each other by well-defined mechanisms to 
regulate a specific biologic phenotype” [11]. From a Computer 
Science perspective, a protein complex forms a highly connected 
sub-graph while a biological pathway is a directed sub-graph. 

The pathway membership problem is biologically motivated 
whereby biologists are confident that a large number of known 
pathways and their supporting evidence are incomplete [7]. We 
view the incompleteness of a pathway in terms of missing proteins 
from the pathway, incorrect connections among its proteins, or 
both. Given a set of proteins that constitute a pathway, the 
pathway membership problem, which is analogous to the complex 
membership problem, can be defined as the problem of 
uncovering and ranking a set of candidate proteins from a given 
probabilistic PPI network [7]. However, PPI networks suffer from 
a large number of false negatives (missing edges) and false 
positives (edges that should not be in the network) due to the 
nature of the experimental and predictive techniques used to 
discover protein interactions. Consequently, methods like random 
walks on graphs and network flow are suggested to extract 
pathway members from a probabilistic PPI network. 

Current research, which has been done in the complex/pathway 
membership problem, is promising and focuses on protein 
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membership, yet it does not address the issue of a candidate 
protein’s location in a given incomplete pathway; it largely 
ignores structural information within the pathway. Therefore, in 
this paper we define a new problem that extends the membership 
problem by predicting the location of the new protein in the 
pathway. We call this problem the pathway completion problem 
and propose a method based on network motifs to tackle it. De 
novo signaling pathway reconstruction addresses a related 
problem; however, it is restricted to signaling pathways and 
concentrates on ordering proteins along such pathways [24]. 

Network motifs are sub-network patterns that exist in networks at 
frequencies significantly greater than expected [20]. Our method 
breaks down an incomplete pathway into a set of potentially 
incomplete motifs and searches a probabilistic PPI network for 
proteins that complete the motifs. We use a scoring method to 
find the best candidates to complete the pathway. 

The rest of the paper is organized as follows. In Section 2, we 
cover background and previous work. In Section 3, we define the 
pathway completion problem and discuss network motifs. In 
Section 4, we formalize an algorithm for the pathway completion 
problem. In Section 5, we discuss some preliminary experiments 
and the datasets used. Finally in Section 6, we conclude and 
propose future work. 

2. BACKGROUND 

2.1 Probabilistic PPI Networks 
With the emergence of large-scale experiments, protein 
interaction data saw an unmatched discovery of new interactions 
over a very short period of time. Such experiments include yeast-
two-hybrid (Y2H) [12, 22] and tandem affinity purification-mass 
spectrometry (TAP-MS) [2, 11, 9]. Despite the abundance of 
interactions derived from large-scale experiments, further 
investigation has shown that such interaction data contains a 
notable number of false positives [7]. Since there is a major 
reliance on this type of data, research became directed towards 
assessing its quality before proceeding with analyzing it and 
incorporating it in any study [2]. Therefore, researchers have been 
integrating different types of biological knowledge and supporting 
evidence into the construction of protein-protein interaction (PPI) 
networks. Hence, probabilistic PPI networks emerged which are 
PPI networks with weighted edges. The weights on the edges 
represent the probability of interaction. 

Table 1 summarizes information about three important 
probabilistic PPI networks. Most computational methods that deal 
with probabilistic PPI network construction are applied to the 
yeast genome. Yeast is a model organism and has been the target 
of numerous experiments and analyses that were performed to 
uncover interactions among its proteins [7]. 

 

Table 1. Yeast probabilistic networks and their properties 

Yeast Network 
Number of 

Proteins 

Number of 

Interactions 

Naïve Bayes [2] 3,112 12,594 

ConfidentNet [16] 5,552 235,222 

PIT-Network [13] 
(L = 300) 

5,240 91,768 

2.2 Complex Membership Methods 
The complex/pathway membership problem has been addressed 
using several methods. Two of these methods focus on examining 
the complex membership problem [2, 6]. A third method deals 
with addressing both pathway and complex membership [7]. 
Probabilistic PPI networks are used in the membership problem 
because they provide a measure of how reliable an interaction is 
among two proteins. Next we describe these methods which we 
call complex membership methods. 

2.2.1 Network Reliability 
To determine how close two nodes are in a weighted network, one 
can look at the probability that some path of reliable edges lies 
between these two nodes at a given time. The idea of network 
reliability can be borrowed and applied to extract close proteins in 
a probabilistic PPI network. Asthana et al. use network reliability 
to tackle the complex membership problem [2]. Given a 
probabilistic PPI network and a protein complex, the method in 
[2] returns a set of candidate proteins from the probabilistic PPI 
network ranked according to the probability that each is a member 
of the given complex. If there is at least one path of interacting 
proteins that connects a protein from the network to a protein in 
the complex, then this protein is added to the set of candidate 
proteins. 

2.2.2 Random Walk on a Graph 
The random walk algorithm in [7] is applied to probabilistic PPI 
networks to extract a list of candidate proteins. The random 
walker starts at a designated start node (a known member of the 
complex), and selects an edge from the possible edges to 
transition to an adjacent node. The walker repeats the edge 
selection and transition process at every time increment until it 
decides to restart the walk (given by a restart probability). Good 
candidate proteins are visited often by the walker. 

2.2.3 Net-Flow 
Net-Flow is a technique based on flow networks and is designed 
by Camoglu et al. [6] to address the limitations of network 
reliability. To calculate the reliability between the proteins in the 
complex and those in the network, the role of “sink” is assigned to 
the network proteins and that of “source” is given to the complex 
members. Moreover, each edge is assigned a capacity of one and a 
cost equivalent to the interaction probability. Finally, maximum 
flow is calculated using linear programming to identify good 
candidates. 

2.2.4 Limitations of Membership-based Approaches 
The methods discussed above were applied mostly to MIPS 
(Munich Information Center for Protein Sequences) benchmark 
protein complexes [19]. The methods work well since protein 
complexes form highly connected sub-graphs; however, biological 
pathways are directed sub-graphs. Thus, the above three methods 
are not expected to work well with pathways. Moreover, Can et al. 
tested the random walk method on a small set of KEGG 
benchmark pathways in addition to the MIPS complexes [14]. 
Yet, none of the above methods address the pathway completion 
problem or exploit the structures available in pathways as 
proposed in this paper. Later, in Section 4, we develop a 
technique geared towards pathways and the completion problem. 



3. MOTIFS AND THE PATHWAY 

COMPLETION PROBLEM 
The first contribution of our work is to extend the scope of the 
pathway membership problem to uncover both membership and 
the location of a candidate protein in a given incomplete pathway. 
We call it the pathway completion problem. The biological 
significance of this approach is to extract complete knowledge 
which allows for better drug design and targeted therapy. Given a 
graph that represents a pathway, the pathway completion problem 
can be defined as: 

1. Find a ranked list of candidate proteins, and 

2. Predict their locations and connections within a given 
incomplete pathway. 

Devising a solution to the pathway completion problem requires a 
different approach compared to those found in the current 
literature, which are more applicable to highly connected sub-
graphs (protein complexes). Here we present a solution based on 
network motifs [20]. A number of algorithms have been designed 
to extract motifs from biological networks [8] such as PPI [23], 
signal transduction [10], metabolic [15], and transcription-
regulation [1, 17, 20, 21, 23]. Shen-Orr et al. [21] list three highly 
significant motifs that are found in the transcription-regulation 
networks of Escherichia coli. These significant motifs are: feed 
forward loop (FFL), single input module (SIM), and dense 
overlapping regulons (DOR). Lee et al. [17] refer to the DOR 
motif as multiple input motif (MIM), and they highlight three 
additional motifs which are regulator chain, auto-regulation, and 
multi-component loop. In this paper, we focus on a small subset 
of motifs called linear, single input, and multiple input. In Table 
2, we show these motifs (circles are proteins and arrows indicate 
interaction). Also in Table 2, we present possible completion with 
an additional protein (square node). Other types of motifs (e.g., 
forks with more than 2 inputs/outputs) will be incorporated in 
future research. The pathway completion problem is addressed by 
uncovering complete motifs from a probabilistic PPI network with 
better scores than the original motifs found in the pathway. 

 

Table 2. Motifs before and after proposed completion. 

Motif Structure Proposed Complete Structure 

Linear   

Single 

Input  

   

Multiple 

Input  

   

 

4. THE FIT AND COMPLETE 

ALGORITHM 
The purpose of the Fit and Complete algorithm is to generate a 
ranked list of proposed complete motifs (i.e. candidate proteins 

with their locations in the pathway) to complete the pathway in 
question. The flow chart of the Fit and Complete algorithm is 
shown in Figure 1. 

 

 

Figure 1. Flow chart of the Fit and Complete algorithm. 

 

The Motif Extractor method takes the incomplete biological 
pathway as input and generates its constituent motifs. The motifs 
act as input to the Search method, along with the probabilistic PPI 
network. The Search method implemented in this paper uses the 
unrealistic assumption that a probabilistic PPI network is 
complete; it includes all proteins and interactions. However, we 
will discuss a more realistic case, which is having an incomplete 
PPI network, in Section 6.  

In Figure 2, we formalize the Fit and Complete algorithm which 
takes the probabilistic PPI network G = (V, E) and the incomplete 
pathway G’ = (V’, E’) as input. In step 1, the algorithm generates 
L, the set of linear motif sub-graphs of G’ (i.e. it breaks down G’ 
into its constituent motifs). Then for each motif l in L and for each 
edge e in l, the algorithm locates the original motif in G (steps 4 
and 5), and computes the score of the motif using the weight of e 
in G (step 6). We will discuss how the scores are computed 
below. In step 7, the Search method is called and it returns the 
ordered set Lc of the complete motifs and the ordered set Sc of 
their scores. In step 8, the set of original motif scores SL, in 
addition to Lc and Sc, are returned.  

Figure 3 shows the details of the Search method. The method 
takes the weighted graph G and the linear motif l as input. In steps 
1 and 2, the empty ordered sets Lc and Sc are created. In step 3, let 
v1 and v2 be the vertices (nodes) of l. In step 4, the method looks 
at the set of first neighbors N of v1 and v2 in the probabilistic PPI 
network to extract possible protein candidates; hence, possible 
complete motifs. For each neighbor n in N, the method calculates 
the score of the complete motif using the edge weights in G (steps 
5 to 9). Finally in step 10, Lc and Sc are returned. Now we 
compare the ordered sets Lc and Sc to SL to see if the candidate 
proteins N improve the scores of the original motifs.  

To score the quality or strength of a motif, we currently use the 
average, minimum, or maximum scores of the weights on the 

 

 

  

    

  

 

  

     

  



edges retrieved from the probabilistic PPI network. Using the 
average to assess the quality of the complete motif allows all edge 
weights to play a role in the scoring and ranking process. 
Considering only the minimum requires all edge weights to be 
strong while using only the maximum ignores weak edges. Any 
scoring function which utilizes interaction scores and/or the motif 
structure can also be used. Finding a biologically motivated score 
is a part of our future research. 

 

Input: weighted graph, G = (V,E) // probabilistic PPI 

network 

 directed graph, G’ = (V’, E’) // incomplete pathway 

(1) Generate L, the set of linear motif sub-graphs of G’ 

(2) For each l in L do // for each motif in L 

(3)  For each edge e  in l 

  // compute the score of the original motif 

(4)   Find we in G, the weight of the 

corresponding edge in G to e 

(5)   Add we to l, the edge weight of e 

(6)  SL = scoreMotif(l) // returns sl the score for 

motif l & adds it to SL the set of original 

motif scores 

(7)  (Lc, Sc) = Search(G, l) // finds Lc the ordered 

set of possible complete motifs and S
c   the 

ordered set of their scores  

(8) Return (SL, S
c
 , L

c) 

Figure 2. The Fit and Complete algorithm. 

 

Input: weighted graph, G = (V,E) // probabilistic PPI 

network 

 motif l in L 

(1) Let L
c
= Φ, the empty ordered set of possible 

complete motifs 

(2) Let Sc
 = Φ

 , the empty ordered set of their scores 

(3) Let v1 and v2 be the two vertcies of l 

(4) Find N the set of all common first neighbors of v1 and 

v2 of l in G  

(5) For each n in N 

(6)  Create motif lc with edges {( v1, n), (n, v2)} 

(7)  Find the weights of the edges in G 

(8)  Add lc to Lc // lc is the complete motif 

(9)  S
c = scoreMotif(lc) // returns sl

c the score of lc 

(10) Return (Lc, Sc) 

Figure 3. The Search method. 

 

5. EXPERIMENTS AND RESULTS 
To illustrate our approach, we applied the Fit and Complete 
algorithm to ConfidentNet and to five yeast KEGG pathways. 
ConfidentNet has 5,552 proteins and 235,222 probabilistic 
interactions. Table 3 lists the five pathways used and the number 
of motifs of each type (i.e. linear, multiple input, and single input) 
identified by Motif Extractor. An example of each type of motif 
uncovered by our algorithm from the yeast MAPK pathway is 
shown in Figure 4. We see an improvement in the scores most of 
the time as demonstrated in the figure. For instance, in Figure 4-
A, we show a multiple input motif and the corresponding 
minimum, maximum, and average scores, which are 3.637, 6.213, 
and 4.925 respectively. After retrieving the first neighbor proteins 

of the motif from ConfidentNet, our algorithm computed the 
resulting minimum, maximum, and average scores of the proposed 
complete motifs. Figure 4-A shows two examples of the proposed 
complete motifs. The two candidate proteins, BEM4 and BUD6, 
improve the scores of the original motif most of the time. In the 
case of BEM4, all scores increase and the new protein would be 
considered a good candidate. For BUD6, the maximum score 
increases, but the minimum and average scores decrease because a 
weak link is introduced. Results for an example of a linear motif 
and of a single input motif are displayed in Figure 4-B and -C 
respectively. 

 

Table 3. Five yeast KEGG pathways used in our analysis. 

Pathway Linear 
Multiple 

Input 

Single 

Input 

Endocytosis 19 5 4 

Cell Cycle 63 12 13 

Regulation of Autophagy 14 1 2 

Meiosis 108 27 20 

MAPK Pathway 65 14 11 

 

 

Figure 4. Investigation of the yeast MAPK pathway shows 

examples of possible proposed complete motifs and their scores 

in comparison to the scores of the original respective motifs: 

A) Multiple input B) Linear C) Single input. 

 

In Figure 5, we plot the minimum, maximum, and average scores 
of three motifs retrieved by our method from the yeast MAPK 
pathway. The thick lines shown in red connect the scores of the 
original motif. In the case of Motif 14, we observe a small number 
of proposed complete motifs with improved scores over the scores 
of the original motif. With respect to Motif 17, none of the scores 
of the proposed complete motifs show improvement over the 
scores of the original motif. Lastly for Motif 24, all the scores of 
the proposed complete motifs improve the scores of the original 
motif. In Figure 6, we provide minimum and average histogram 
plot of the number of all motifs retrieved by our method and  their  



 

Figure 5. Examples of original motif scores vs. proposed complete motifs scores found by our algorithm. 
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Figure 6. Histograms and summary statistics. 

 

improvement. The improvement is computed as the difference 
between the score of the original motif and the score of the 
proposed complete motif. For example, we find that there are 
around 16 proposed complete motifs with significant 
improvement in the minimum and average scores over the original 
scores. We believe that such proposed complete motifs are 
interesting and should be studied further since they suggest 
candidate proteins with their locations to complete an incomplete 
pathway. In Figure 6 (histogram to the right), we summarize the 
results we obtained for all the pathways we investigated. We show 
for each pathway the number of proposed complete motifs with 
minimum, maximum, and average improvement above and below 
0. In the case of the yeast MAPK pathway, we observe that the 
number of the proposed complete motifs with no improvement is 
much higher than those with improvement. On the other hand, in 
the case of the Endocytosis pathway, we find that the number of 
proposed complete motifs with improved scores is higher than 
those which show no improvement. 

6. CONCLUSION AND FUTURE WORK 
Our first contribution in this paper is extending the pathway 
membership problem and defining a completely new problem, 
which we call pathway completion. This problem is hard since it 
requires the prediction of the location of candidate proteins in the 
pathway. Our second contribution is proposing to solve pathway 
completion using network motifs. This method exploits the local 

structures represented by network motifs. Although the presented 
technique produces promising results, the main shortcoming is 
that it assumes that the probabilistic PPI network contains 
complete information; PPI networks suffer from a large number of 
false negatives and false positives in the form of missing proteins 
and edges. However, this can be remedied by using a search that 
is based on random walks on graphs which will be our next step. 
Other future research topics, which will address the limitations of 
our method, include: edge deletion to handle pathways which 
have incorrect edges, dealing with more complex motif structures, 
and developing more suitable scoring techniques. 
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