
 

 

 

Abstract— Accurately predicting the intensity and track of a 

Tropical Cyclone (TC) can save the lives of people and help to 

significantly reduce damage to property and infrastructure. Current 

track prediction models outperform intensity models which is 

partially due to the existence of rapid intensification (RI) events. RI 

appears in the lifecycle of most major hurricanes and can be defined 

as a change in intensity within 24 hours which exceeds 30 knots. 

Improving the predicting of RI events has been identified as one of 

the top priority problems by the National Hurricane Center (NHC). In 

this paper we compare the RI event prediction performance of several 

popular classification methods: Logistic regression, naive Bayes 

classifier, classification and regression tree (CART), and support 

vector machine. The dataset used is derived from the data used by the 

Statistical Hurricane Intensity Prediction Scheme (SHIPS) model for 

intensity prediction which contains large-scale weather, ocean, and 

climate condition predictors from 1982 to 2011. 10-fold cross 

validation is applied to compare the models. The probability of 

detection (POD) and false alarm ratio (FAR) are used to measure 

performance. Predicting RI events is a difficult problem but initial 

experiments show potential for improving forecast using data mining 

and machine learning techniques. 

 

Keywords—Classification, Data Mining, Rapid Intensification, 

Tropical Cyclone.  

I. INTRODUCTION 

Tropical Cyclone (TC) is a weather phenomenon that 

forms in tropical oceans and creates strong winds and 

heavy rain. Its intensity is measured by its maximum wind 

speed. Every year during hurricane season, tens of tropical 

cyclones form in the Atlantic basin and some of them become 

major hurricanes which severely affect populated areas. 

Hurricane Katrina in 2005 is an example of such a hurricane. 

Its maximum sustained wind reached 175 mph which was 

classified as category 5 in the Saffir-Simpson Hurricane Scale 

[2]. The hurricane made 3 landfalls and killed over 1,833 

people which made it the deadliest hurricanes in the United 

States. It also caused billions of dollars in damages [1]. The 

hurricane season starts in June, ends in November and reaches  

its peak at the end of August. Affected areas are close to the 

equator [3]. 
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Different statistical, dynamical, and statistical-dynamical 

models have been developed to predict the hurricane track and 

intensity. Some models can predict the behavior of the storm 

several days ahead.  Intensity models have not improved as 

much as track models. One reason is due to the existence of 

rapid intensification (RI) events. A RI event can be defined as 

the change in intensity increase of 30 knots or greater within 

24 hours [6]. Improved predictions of RI have been identified 

as NHC top priority [6]. The reason why predicting RI events 

is challenging, is because they are rare and their causes are still 

not very clear.  

The rapid intensification index (RII) [6] is a regression-

based statistical model used to forecast RI events based on 

large-scale weather, ocean, and climate condition predictors 

which are derived from the Statistical Hurricane Intensity 

Prediction Scheme (SHIPS) hurricane intensity prediction 

model. The RII model is operationally used by NHC to predict 

RI events in real time. The RII model was examined for each 

of the following intensity change thresholds: 25, 30, and 35 

knots and the used predictors were chosen based on previous 

studies. The experiments have shown that among these 

predictors the change in intensity over to the previous 24hours, 

upper-level divergence, and vertical shear have the strongest 

influence on the appearance of an RI event for the Atlantic 

basin [6]. There is significant potential for improvements since 

the probability of detection (POD) in the Atlantic basin ranges 

between 15% and 59% whereas the false alarm ratio (FAR) is 

very high ranging between 71% and 85% [6].  

Classification is a supervised learning technique used to 

classify an instance into one of a set of available classes [4]. 

Supervised learning means that the classes of the data points in 

the training dataset are known and are used for model building. 

For the RI problem, the value of the class attribute is either 

rapid intensification (RI) or not rapid intensification (NRI). 

Since RI is a classification problem, the goal of this paper is to 

apply and compare different popular classification techniques 

on a historic dataset.   

In this paper, we discuss the RII model and experimentally 

compare it with a set of popular classification methods.    

II. TROPICAL CYCLONE DATASET 

The TC dataset includes a set of historic TCs that happened 

from 1982 to 2011 in the Atlantic basin. Each TC has a unique 

identifier. The rows are data points that represent the lifecycle 

of a TC every 6 hours and include a set of predictors. The 
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predictors describe weather, persistence, atmosphere, ocean, 

and climate conditions such as the maximum intensity and 

wind shear. Weather and climate conditions are gathered in 

various ways. Satellites, buoys, and radars are examples. 

Different sophisticated models estimate the values of the 

predictors. Table 1 represents the predictors’ minimum and 

maximum values and their description. The description is 

gathered from [5] and [7]. The RII model estimate of RI with a 

30 knots threshold is derived from the 2010 SHIPS model and 

is added to the dataset as the feature RII. The TCs dataset can 

be found at http://lyle.smu.edu/IDA/data/storms. 

 
TABLE I 

SHIPS (2010) PREDICTORS: RANGE AND  DESCRIPTION  

Predictor Minimum Maximum Description 

LAT 7.2 51.9 Latitude in degrees North * 10 vs. 

time 

LON -109.3 -6 Longitude in degrees West * 10 

vs. time 

VMAX 15 160 Maximum intensity in knots 

PER -45 75 Previous 12-h change in 

maximum intensity in knots 

ADAY 0 1 Absolute value of Julian day 

SPDX -29 48.034 Zonal component of initial storm 

motion. (-) is the wind movement 

from east to west whereas (+) is 

the opposite 

PSLV 246 1124 Vertical depth 

VPER -4025 11250 VMAX x PER 

PC20 0 100  ercentage of cold cloud-top 

      brightness temperature   -

       

GSTD 0 2822 VMAX x standard deviation of 

GOES brightness temperature 

POT -30.14 151.62 Along-track average of 

empirically estimated maximum 

potential intensity(MPI) minus 

VMAX at time 0 

SHDC 0.5 74.5 850 mb shear magnitude vs. time 

T200 -60.9 -45.7 Average 200 mb temperature 

within 1000 km of storm center 

T250P -8 0 Average 250 mb temperature 

within 1000 km of storm center 

EPOS 0 22.35 200-800 km average theta 

difference between a parcel lifted 

and environment vs. time 

RHMD 19.5 84.5 700-500 mb relative humidity 

TWAT -6 7.9 GFS model mean tangential wind 

Z850 -162.5 278 850-hpa absolute vorticity 

D200 -95 205 200-pHa divergence 

LSHDC 0.2245 54.5737 SHDC x sine of LAT 

VSHDC 32.5 5960 SHDC x VMAX 

POT2 1.000e-05 2.30e04 Square of POT 

RHCN 0 94 Ocean heat content (KJ/cm2) 

SDIR -86.37526 86.59061 Reference direction for shear 

direction 

SHGC -14.0022 19.1011 Generalized shear 

magnitude vs time 

 

For the study in this paper we added derived features 

including the changes in intensity (persistence) over the 

previous 6, 18, and 24 hours and VMAX (intensity) multiplied 

by the previous changes in maximum intensity. The storm’s 

day of the year was also added. The derived predictors are 

shown in Table 2. 

TABLE 2 

DERIVED PREDICTORS: RANGE AND DESCRIPTION  

Predictor Minimum Maximum Description 

PER6 -65 55 Previous 6-h change in VMAX 

PER18 -115 85 Previous 18-h change in VMAX 

PER24 -110 95 Previous 24-h change in VMAX 

VPER6 -4675 7150 VMAX x PER6 

VPER18 -4275 13600 VMAX x PER12 

VPER24 -4750 15200 VMAX x PER18 

YDAYS 1 365 Day of the year 

VPC20 0 16000 PC20 x VMAX 

 

Once the storm hits the land the intensity of the storm 

decays rapidly [5]. Therefore, the overland cases were 

removed from the dataset.  

The class attribute is derived from the changes in intensity 

features. It has two values; either RI or NRI. The data point is 

classified as RI if the change in intensity over 24 hours is 30 

knots or greater otherwise the data point is classified as NRI. 

III. MODEL COMPARISON 

A. Cross Validation 

There are different ways to test how well a predictive model 

performs. For hurricane prediction it is common to predict the 

values for a year (a hurricane season) using the data from all 

previous years. This mimics the real application where a model 

trained with all available data is used for the current season. 

However, to get more accurate results, we have decided to use 

the standard evaluation method in data mining called 10-fold 

cross validation. 

 We randomly split the dataset into 10 distinct sets (folds), 

each containing the same number of hurricanes. In each round, 

one fold is used for testing and the remaining 9 folds are used 

for training. This guarantees that all data is used at least once 

for testing. Finally, the ten results are averaged. 

B. Performance Metric 

The predictions of a classification model are used to 

compute true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN) as shown in confusion 

table in Table 3. Based on the counts we calculate the 

probability of detection (POD) and false alarm ratio (FAR) 

and plot them similar to a Receiver Operating Characteristic 

(ROC) [14] curve which plots sensitivity versus specificity. 

We use POD and FAR because the RII model uses them for 

evaluation and we compare our results to their results.  

We use prediction models which produce a probability of 

class membership so we can use different thresholds to adjust 

the tradeoff between POD and FAR.  
 

TABLE 3 

CONFUSION TABLE 

Predicted/Actual RI NRI 

RI TP FP 

NRI FN TN 

http://lyle.smu.edu/IDA/data/storms


 

 

 

 POD is the ratio of the correct forecasts of RI occurrences 

to the actual number of RI occurrences while FAR is the 

number of incorrect forecasts of RI divided by the total 

number of RI forecasts [6]. The greater the value of POD and 

the lower the value of FAR the better the model performs. The 

POD and FAR values are calculated as shown in (1) and (2) 

[4]. Sensitivity used in the ROC curve is the true positive rate 

(TPR) and is equivalent to POD whereas specificity is the false 

positive rate (FPR) and is computed as shown in (3) [14].  
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An example of a storm with an RI event is shown in Figure 

1 (from time 120 through 168). The way the true class is found 

is shown in Table 4. All observations for with the intensity 

increases over the next 24 hours by 30 or more knots (see 

marked values in row Change in Table 4) are part of the RI 

event. In addition 3 observations (i.e., 24 hours) after the last 

change that exceeded 35 knots are also part of the event since 

during that time the intensity also increased by more than 30 

knots. The classification algorithm will predict a class label.  

Based on Table 3 and the true class we determine if the 

prediction is a TP, TN, FP, or a FN. 

 

  
Fig. 1 An example of a RI event maximum intensity versus time 

where the size of the circle expresses the maximum intensity. 

IV. RAPID INTENSIFICATION INDEX (RII) 

A. Description 

An updated version of the RII model is currently used by the 

NHC. The predictors (PER, SHRD, RHLO, and POT) are 

identical to those used in earlier versions but the way some 

were measured has been slightly altered. The predictors D200, 

PX30, SDBT, and OHC were added. Some predictors were 

averaged from time t=0 to t=24 instead of only using time t=0 

[6]. The set of additional predictors that were not mentioned in 

Table 1 are described in Table 5 [6]. 
 

TABLE 4 

RI EVENT EXAMPLE 

Time in 

 Hours 

108 114 120 126 132 138 144 150 156 162 168 174 180 

VMAX 45 45 50 50 55 65 80 95 110 130 145 150 125 

Change 5 10 30 45 55 65 65 55 15 -45 -55 -60 -45 

Class NRI NRI RI RI RI RI RI RI RI RI RI NRI NRI 

 
 

TABLE 5 

RII MODEL PREDICTORS 

Predictor Description 

SHRD 850-200 mb shear magnitude vs. time 

RHLO 850-700 mb relative humidity vs. time 

PX30  ercentage of cold cloud-top       brightness 

temperature   -       

SDBT Standard deviation of cold cloud-top brightness 

temperature 

OHC Ocean heat content 

 

B. Training 

The magnitude of each predictor is scaled between 0 and 1 

where 0 indicates no or minimal influence on RI and 1 

indicates maximal influence.  The weighted sum of the scaled 

magnitude values Sp for the eight predictors p is computed to 

produce a RI score 
S

R  for each observation [4]: 
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where n is the number of predictors and W is the weight of 

each predictor obtained from linear discriminant analysis.  

The scores are split into 4 quartiles such that each quartile 

has an equal number of RI events regardless of the number of 

NRIs. For each quartile, the number of RI events is divided by 

the total number of RIs+NRIs that appeared in that particular 

quartile to estimate the probability of RI in each quartile [6]. 

C. Testing Result  

To test the model, the score (i.e., discriminant value) Rs of 

each data point in the test set is computed. The matching 

quartile is found and the probability is estimated using linear 

interpolation within the quartile. We use the SHIPS code 

(version 2010) provided by Dr. Mark DeMaria for the 

calculation. For classification we use a threshold on the score, 

regarding scores above the threshold as RI and below NRI. 

The results of 10-fold cross validation with varying thresholds 

are shown in Figure 2. Each line connects the classification 

results obtained at different thresholds for one of the 10 

validation runs. The thicker blue line in the center represents 

the mean of the 10 runs.  

I. CLASSIFICATION MODELS 

For all classification models we only use the original and 

derived features discussed in section II and not the features 

added for the RI index discussed in the previous section.  



 

 

 
Fig. 2 Results of RII model POD and FAR using 10-fold cross 

validation. 

 

A. Logistic Regression 

1) Description 

Logistic regression is used to predict a categorical variable 

such as the class label. Logistic regression models the log of 

the odds ratio (logit) of a class label as a linear regression on a 

set of covariates in the following form [16]: 
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This formulation guarantees that pi is between 0 and 1 and can 

be used as a probability of a class label (in our case RI). A 

threshold on this probability can be used to extract a 

classification.  

2) Training 

We used R [15] for logistic regression. 

3) Testing Results 

Figure 3 is a representation of the results of POD and FAR using 10-

fold cross validation. 

 

 
Fig. 3 Results of regularized logistic regression POD and FAR 

using 10-fold cross validation. 

B. Naïve-Bayes Classifier 

1) Description 

The Bayes Theorem shown in (6) is used to estimate a 

posterior probability given the class-conditional probability 

P(X|Y) and new evidence P(X): 
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The class-conditional probability in the Bayes Theorem can be 

computed using different Bayesian classifiers such as naïve-

Bayes and belief network classifiers.  Naïve-Bayes is a simple 

classifier which assumes that the predictors are conditionally 

independent whereas belief networks are more complicated 

and are directed acyclic graphs that include nodes representing 

the relationships between features [8].  

The naïve Bayes classifier is chosen for its simplicity, 

capability of efficient computation, and ability to perform well 

even if the predictors are not independent in reality and 

especially when the number of predictors is large [9]. It works 

with categorical and, continuous features. Under the 

assumption of independence, the class-conditional probability 

for each feature is computed as shown in (7) [8]. 
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If the values are categorical then, the class-conditional 

probability P(Xi|Y=y) is estimated by counting the number of 

times Xi and class y co-occur divided by the total number of 

times class y occurs. Whereas if the values are continuous, 

they can either be transformed into categories then the 

probability is estimated as described above or a distribution is 

chosen to estimate the probability. Typically a Gaussian 

distribution is chosen where the mean μ and variance σ
2
 are 

computed and the probability is estimated as shown in (8) [8]. 
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After calculating the class-conditional probability, the 

posterior probability can be easily computed using (9) [8]. 
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2) Training 

We used a package in R called e1071 [10] that includes a 

naive-Bayes classifier. The prior probabilities P(X) of RI and 

NRI are shown in Table 6 which shows that there is strong 

class imbalance between RI and NRI where most of the 

records belong to class NRI. This is because RI cases are rare 

events. There are several available methods that can be applied 



 

 

to solve this problem (e.g., resampling), but this is outside the 

scope of this paper. 

 
TABLE 6 

RI AND NRI PRIOR PROBABILITIES  

P(RI) P(NRI) 

0.90076046 0.09923954 

 

3) Testing Result  

Figure 4 is a representation of the results of POD and FAR using 10-

fold cross validation. 

 

 
Fig. 4 Results of naïve Bayes classifier POD and FAR using 10-

fold cross validation. 

 

C. Classification and regression tree (CART) 

1) Description 

A decision tree is a simple technique that is used widely and 

has proven to work well for many problems. They can be used 

for classification (classification) or regression (regression tree) 

[8]. We use a regression tree to predict the probability of RI.  

To decide about which class a certain object belongs to, the 

object has to go through several test conditions. The tree's root 

and internal nodes represent these test conditions while the leaf 

nodes represent the classes. The test conditions are based on 

the features such as the wind speed and shear. The tree is built 

based on the training dataset and to classify a new data point a 

series of decisions are made through the tree path starting from 

its root and ending at a leaf node specifying the class [8]. 

 A decision tree is chosen for its simplicity where the tree is 

easy to understand. Also, it works well with large datasets and 

does not need much data preprocessing. Furthermore, it 

handles continuous and categorical data types.  

CART uses a recursive technique that is applied on each 

child node to build the tree. It divides the tree into smaller and 

smaller subsets by adding new test conditions until each leaf 

node's members belong to the same class. The set of features 

chosen as test conditions provides information about their 

importance [11]. CART's test conditions are binary which 

means that it creates a binary tree. One of the advantages of 

CART is that it provides a post-pruning strategy to prevent 

overfitting after the complete tree is built.  

2) Training 

The R package rpart [12] was used to build the model. Table 

7 represents a summary of the features the model identified as 

the most important ones. It is interesting that only a small set 

of features have high importance. PER (persistence) was 

chosen to be the most important feature. Most of the other 

important features were also related to the change in intensity. 

 
TABLE 7 

THE MOST IMPORTANT FEATURES CHOSEN BY CART 

AND THEIR IMPORTANCE 

Feature Importance Feature Importance Feature Importance 

PER 22 PER18 15 VPER 14 

VPER18 11 PER6 10 VPER6 9 

PER24 3 SHDC 2 VPER24 2 

LSHDC 2 VSHDC 1 LOC 1 

LAT 1 YDAYS 1 SPDX 1 

ADAY 1 POT 1 Z850 1 

 

 The produced complete tree is very large with a high testing 

error. To reduce the tree’s size we pruned the tree using the 

complexity parameter. The complexity parameter that 

minimizes the error after cross validation was chosen. 

The 11 features that were used in splits in the final tree are 

ADAY, PER18, LOC, LSHDC, PER, POT, PSLV, SHDC, 

VPER6, YDAYS, and Z850. Figure 5 shows one of the final 

CART models (there is one tree built per cross validation run). 

 

 
Fig. 5 A representation of a CART decision tree. 

 

3) Testing Result  

Figure 6 is a representation of the results of POD and FAR using 10-

fold cross validation. 

D. Support Vector Machine (SVM) 

1) Description 

SVM is a very important and successful classification and 

regression technique. Support vectors are points that are 

selected from the training data and are used to specify the best 

decision boundary given as a hyperplane that produces the 

maximum margin. The margin is the distance between two 

hyperplanes used to separate the classes. The idea is to 

maximize the space in order to have the largest possible 

separation between classes. A new data point will be assigned 



 

 

a class depending on which side of the separating hyperplane it 

falls [8]. 

If a hyperplane that separates the two classes in the dataset 

perfectly can be found, then the dataset is linearly separable 

and the linear discriminant function shown in (10) can be used 

to separate the classes [13]. 
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where w and b are parameters of the hyperplane and w
T
x is the 

dot product.   

SVM also works with data where classes cannot be 

separated linearly. To deal with such a problem, the training 

data can be transformed into a high dimensional space in 

which the data is linearly separable. This non-linear 

discriminant function is shown in (11) [13]. 
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where 𝚽(x) maps x into the transformed space. 

 When a non-linear transformation is performed, the 

dimensionality of the feature space can be very large and the 

transformation can be very expensive. However, this can be 

avoided by using the kernel trick which transforms the dataset 

into an inner product space [17]. This step computes the dot 

product between the pair of points to measure the similarity 

between the objects in the transformed space using the original 

space using (12) [8]. 
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 Polynomial, Gaussian, radial basis, and sigmoid are some 

kernel examples used to transform the data. 

 

 
Fig. 6 Results of CART model POD and FAR using 10-fold cross 

validation. 

 

2) Training 

The e1071 R package includes a SVM classifier that we used 

to build our model. The package provides the following kernel 

functions: linear, polynomial, radial basis, and sigmoid. We 

built our model using the above kernels and chose the one with 

the least testing errors. 

3) Testing Result  

The results of POD and FAR of each kernel are shown in 

Table 8. 

 
TABLE 8 

POD AND FAR RESULTS USING DIFFERENT KERNELS 

Kernel POD FAR 

Radial 39.24 6.061 

Linear 41.46 15 

Sigmoid 39.02 50.77 

Polynomial 24.39 9.09 

  

As we can see from Table 8, the radial kernel produced the 

least testing errors while POD is only slightly below the linear 

kernel. Therefore, we build the model using the radial kernel. 

The results of POD and FAR using 10-fold cross validation are 

shown in Figure 7.  

 

 
Fig. 7 Results of SVM model POD and FAR using 10-fold cross 

validation using a radial kernel.  

 

II. COMPARISON 

By looking at Figure 8, we can see the results of the different 

models using 10-fold cross validation. It shows that the 

support vector machine (SVM) model using a radial kernel 

outperforms the other models. The performance of logistic 

regression (LR) is very close to SVM where naïve-Bayes and 

classification and regression tree (CART) do not perform as 

well.   

The results of the experiments show an improvement in the 

prediction of rapid intensification which can potentially 

improve the intensity forecast of tropical cyclones (TC).  

III. CONCLUSION 

Predicting RI is very important since it can improve the 

intensity forecast which can prevent loss of human life and 

reduce damages that are caused during landfall. Predicting RI 

events is a very hard problem since it is a rare event and the 



 

 

causes are related to climatological properties that are still not 

very clear. By comparing different classification techniques, 

we found that predicting RI events can be enhanced using 

popular data mining classification techniques. 

The results can be improved in the future by addressing the 

class imbalance problem. Feature selection algorithms can also 

be applied in order to add weights so that important predictors 

will have more influence on the classifiers.   

 

 
Fig. 8 A comparison of the models’ POD and FAR using 10-fold 

cross validation.  
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