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Abstract— Phylogenetic tree analysis using molecular sequences
continues to expand beyond the 16S rRNA marker. By ad-
dressing the multi-copy issue known as the intra-heterogeneity,
this paper restores the focus in using the 16S rRNA marker.
Through use of a novel learning and model building algorithm,
the multiple gene copies are integrated into a compact complex
signature using the Extensible Markov Model (EMM). The
method clusters related sequence segments while preserving
their inherent order to create an EMM signature for a mi-
crobial organism. A library of EMM signatures is generated
from which samples are drawn for phylogenetic analysis. By
matching the components of two signatures, referred to as
quasi-alignment, the differences are highlighted and scored.
Scoring quasi-alignments is done using adapted Karlin-Altschul
statistics to compute a novel distance metric. The metric satisfies
conditions of identity, symmetry, triangular inequality and the
four point rule required for a valid evolution distance metric.
The resulting distance matrix is input to PHYologeny Inference
Package (PHYLIP) to generate phylogenies using neighbor
joining algorithms. Through control of clustering in signature
creation, the diversity of similar organisms and their placement
in the phylogeny is explained. The experiments include analysis
of genus Burkholderia, a random microbial sample spanning
several phyla and a diverse sample that includes RNA of
Eukaryotic origin. The NCBI sequence data for 16S rRNA is
used for validation.

I. INTRODUCTION

16S rRNA, a part of ribosomal RNA, is an essential and
ubiquitous gene sequence and it is commonly collected and
used for microbial identification [1] and classification [2].
However, an organism may have more than one copy of
the sequence and though rare, these copies may be results
of lateral transfers from others organisms [3]. Selecting the
right copy is not always obvious though some methods are
known in the literature[4]. Since all approaches may not
necessarily select the same copy, some inconsistencies are
unavoidable[5]. Extensible Markov Models (EMM)[6] can
be used to create a unique representation in such cases [7]
from all sequences.
EMM is a time varying Markov chain or a directed graph
with nodes representing the states containing the clusters
of related dynamic event data and arcs representing the
transitions unique to the order of events. Such modeling has
many applications in a variety of fields including future state
prediction [8] and rare event detection [9].
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Though several alternative single copy markers are in use
specifically for diagnostic identification purposes, we ex-
plored a way to extend the well established role of 16S rRNA
in defining the overall microbial taxonomy [10] to lower taxa
analysis.
As a Bioinformatic adaptation of an Extensible Markov
Model, EMM Bioinformatic Analysis (EMMBA) transforms
m molecular sequences to a single EMM signature of M
states. It can be considered a representation of sequence
data with states representing clusters of similar sequence
segments and inter-state transition probabilities representing
the implicit order within the sequences. It has recently been
reported that EMM signature representation of sequence data
is computationally more efficient than the native standard
format used in genome libraries [7]. Any multi-feature nom-
inal or numeric data can be learned and stored in a compact
signature form useful for efficient mining. In addition to the
applications in sequence transformation, EMMBA has im-
portant applications in Bioinformatic machine learning, such
as Metagenomic sequence classification, differentiation and
species identification. As the number of genome sequences
becomes large or as it becomes necessary to process data in
real time, statistics based heuristics are needed. For these
reasons, There have been many attempts to design both
classic alignment based, as well as, alignment free methods
to perform large scale sequence searches and analyses [11,
12]. Unlike the traditional sequence analyses that directly
utilize the raw homologous sequence data, this paper presents
a complex Markov signature representation for sequence
analysis based on machine learning with time complexity of
O(mLK +m2) as opposed to O(mL+ L2 +m2log(m)) of
ClustalW+clustering method where m, L and K represent
the number of sequences, the length of one such sequence
and the number of equal sized segments in each sequence
respectively. By including all the available sequence infor-
mation as opposed to selecting a single representative one,
consistency in phylogeny is made possible by this approach.
The rest of this paper is organized as follows: Section II de-
rives an equivalent Markov formulation of sequence learning
that is suitable for the sequence signature design. Section
III includes related work and introduces the comparative
sequence analysis using all-to-all distance computation and
algorithmic framework. Some Phylogenetic study results are
presented in Section IV to illustrate the performance of EMM
signature differentiation. Finally, Section V discusses the
results and concludes the paper.
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Numerical Summary Vectors (NSV) constitute the numerical representations of equal sized segments along a 16S sequence which are used in building an EMM signature.
Signature building starts with a start state; as each NSV is processed, it is compared to the existing states of the model. If the NSV is not found to be close enough (per a
Euclidean threshold) as in the case of NSV 1, a new state (1) is created with the new NSV as its first cluster member; otherwise, the new NSV (as in the case of NSV 3) is
simply added to the matching cluster state node (state 1). When all NSVs are processed, the model building process is finished.

Fig. 1. The Model Building Process

II. FORMULATIONS

The letters or base compositions of an RNA sequence
{A, C, U, G} provide frequency information. The co-
occurrences of a pattern of bases of length l generates an
l-mer frequency representation for a sequence ([12]).
We use the notation F (S) to represent a transformation
function acting on m 16S rRNA sequences of an organism
and G = (V,E) representing a directed graph of V nodes
and E edges where |V | and |E| are used to represent the
number of vertices and edges, respectively. The vertices are
also referred to as nodes and states of the EMM graph to
improve readability. Mathematically, EMM generation can
be expressed as:

G′ = G
⊎
F (S) (1)

Where the
⊎

is the operator to integrate a new set of
sequences S into a model being built. F (S) is further
expressed in terms of nested functions F ′ and F ∗ as follows:

F (S) =< F ′(S1), F ′(S2), ..., F ′(Sm) >
F ′(Si) =< F ∗(s(i,1)), F ∗(s(i,2)), ..., F ∗(s(i,k)) >

F ∗(s(j,k)) =< v(j,k,1), v(j,k,2), ..., v(j,k,n) >

Where the functions F, F’ and F* are Numerical Summariza-
tion Functions to convert molecular sequences to oligomer
frequency form. The function F collects m sequences being
transformed and applies the F ′ transformation function. The
function F ′ converts a single sequence to k equal sized
segments and applies the function F ∗ on each segment.
The function F ∗ converts a sequence segment to a vector
of frequencies with each frequency representing one of the
oligomer variants. Such vectors are referred to as Numerical
Summarization Vectors (NSV) and the size of an NSV is
given by 4l where l is oligomer length.
Finally,

⊎
extends the directed graph i.e. sequence signature

as shown in Figure 1 by clustering each NSV generated by
the F function into a new or an existing node of the graph

and appropriately updating the arc information. The initial
signature graph is empty graph. The function

⊎
can be

further expressed by the following algorithm:
For each NSV vi,

1) Find the closest match, i.e. the nearest node to the NSV
vi.

2) if match not close enough, create a new node.
3) add arc from current node to the matched/new node.

where the closest match is defined as the node whose centroid
is at a minimal Euclidean distance from the NSV vi and
adding an arc involves updating the arc probability. The state
of the graph (current node) is always the last matched node.
The state resets to the start state for every new sequence.
Fig. 1 shows the EMM build operation graphically. In
this section, we formulated the EMM build operation as a
transformation problem, which is suitable for compressing
sequences into a signature. The transformation funtion of

⊎
is equivalent to a compression function. This is explained as
follows:
Since S representing all sequences of an organism can be
thought of as a matrix of m rows and k columns with
all its elements as sequence fragments of equal size, the
resulting graph signature G will have no more than k states.
Since several similar segments are clustered into fewer states,
number of nodes is never larger than the number of segments.
This is first order compression. Since there are several similar
sequences and their segments are also clustered into the
signature graph, the final number of nodes is also never larger
than the total number of segments. In fact, if the sequences
are indeed similar, number of states is surely smaller than
the number of segments. Since a cluster is represented by its
centroid only, a node would have only one vector though
several similar vectors were clustered into it. This is the
second order compression. Since segments are represented
as oligomer frequency vectors whose size depends on the
chosen oligomer length, the compression should exist so long



as the NSV size is less than the segment size. With the added
benefit of compression, we can design a library of sequence
signatures that are compact due to space reduction and
informative due to arc probabilities preserving the segment
order statistics. By reducing the number of similar sequence
fragments into a single numerical vector form, the quantity
and the complexity of comparisons is reduced while also
avoiding the processing to select a candidate gene copy for
analysis.

III. COMPARATIVE SEQUENCE ANALYSES

In recent decades, several effective sequence analysis tech-
niques have been proposed and in use. Karlin and Altschul
developed [11] a fast heuristic algorithm based on statistical
significance of basic local alignment. Results of BLAST
algorithm are used to-date as a step in phylogeny analysis.
Lilburn et al presented a heat map visualization technique [4]
to examine and correct for any inconsistencies in the gen-
eration of Phylogeny. For traditional Phylogenetic analyses,
the process involves performing a multi-sequence alignment
and finding a reliable distance between all sequence pairs
based upon some specific conserved fragment. Due to rise
in the next generation sequencing projects, whole genomes
are also at one’s disposal, but this adds to the complexity
by requiring yet another sequence selection process. The
prevalent method by the authoritative microbial classification
resource is described by Lilburn et al in [4] using heatmap
visualization. The general method for generating Phylogeny
is as follows:

1) Pick the longest 16S rRNA for a genome with the most
conserved homologue positions.

2) Perform Multiple Sequence Alignment for all the rep-
resentative 16S rRNA sequences at those positions.

3) Pick a pairwise distance estimation method and create
a distance matrix.

4) Apply Hierarchical clustering to generate dendrogram
attached heat map visualization for the resulting phy-
logenetic tree.

The main drawback of this method is that the approach
must pick one of several 16S rRNA copies in a genome and
also that different pair-wise distance measurements generate
different Phylogenetic trees. Having to perform multiple
sequence alignment is also time consuming. Thorne et al
suggest [13] that freeing phylogenies from the artifacts
of alignment could help improve topological accuracy. We
propose using the EMM signatures of the 16S sequence
profiles of organisms to compute the distance matrix. Since
signature profiles contain all available 16S rRNA copies, no
information is sacrificed. This process is described using a
differentiation operation between the two EMM signatures
involved. When all sequence pairs are evaluated, a distance
matrix is generated.

Given two EMMs, e1 and e2, the distance between them is:

D(e1, e2) = d(e1, e2) + d(e2, e1)
where d(ei, ej) measures how far ej is from the ei as below

d(ei, ej) =
|ej |∑
k=0

ω∗(sk, s′k)

where ω∗(sk, s′k) scores the matched pair (k, k’) of states

Since both graphs are independent with their own sets of
vertices and weighted edges, the distance between them is
computed using a two step approach. First, one of the two
EMM graphs is fixed as the host while the other is made a
guest. Guest is evaluated against the host EMM graph to
determine its distance from the host. Prior to evaluation,
the guest EMM is converted to an ordered list of NSVs
where each NSV is the centroid vector of a node in the
graph. Since EMM states are numbered in the order of their
creation, the same order is used in generating the NSV list
for the guest EMM. Each guest NSV is then searched against
the host EMM graph of nodes to find the closest match
based on minimum Euclidean distance. Comparison is done
between the guest NSV and the centroids of host nodes.
Once the closest match is determined, the pair i.e. guest
NSV and the host node are said to be in quasi-alignment.
The quasi-alignment is then scored and aggregation of all
quasi-alignment scores produces distance between the guest
and the host. The process is repeated by switching the
roles of guest and host to derive distance in the other
direction also. Both uni-directional distances are aggregated
to derive a symmetric distance between both EMM graphs.
The details of scoring quasi-alignments and their aggregation
are discussed next.
The distance evaluation function d(ei, ej) scores the quasi-
alignments of ej against ei by taking the difference between
the two matched states. The difference between two EMM
states is the difference between their centroids. The centroids
in EMM signatures are vectors of mean frequencies of
oligomer patterns occurring across all sequence segments
that make up the state. The difference between the centroids
generates a difference centroid which is scored. Kotamarti et
al have proposed a LOD score matrix for EMM signatures [7]
by extending Karlin-Altschul statistics [11]. Given Xea as a
scoring array for EMM ea, and −→c as the vector difference
in the centroids of quasi-aligned states of both EMMs, the
scoring function ω∗(sk, s′k) may be expressed as follows:

ω∗(sk, s′k) =
n−1∑
y=0

Xei
y
−→c y +

n−1∑
y=0

Xej
y
−→c y

Where y loops over all the n elements in the centroid
vector. Since both EMMs are Markov models, the state
transition differences between the two are also considered
when scoring the quasi-alignments between them. In the
notation d(e1, e2), e1 is called the host and the e2 is called
the guest. As each state from e2 is searched across e1 to find
the nearest match, the state transition validity is checked.
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Distance between two EMM signatures is determined by adding the results of d(e1, e2) and d(e2, e1). The operation of d(e1, e2) is described in the figure where e1 is the
host EMM and e2 is the guest EMM. For each state si from e2, the nearest (Euclidean based) state s′i from the e1 is determined. The difference in centroid vectors of the
state pair (si, s

′
i) is considered for scoring. In case there is no valid transition between the current host state s′i and the previously matched s′i−1, a penalty is applied to the

difference score between the current match or quasi-alignment. When all states of e2 are processed, all the difference scores are added to derive a one way distance value. The
process is repeated with e2 as the host and e1 as the guest deriving distance in the other direction. Both distances are added to derive the final distance between both EMM
signatures.

Fig. 2. Algorithmic operation of the EMM differentiator

Given i′ as the matched host node for a guest NSV i, a
state transition (i′ − 1, i′) is valid if there is an edge or
arc present between the currently matched host node i′ and
the previously matched host node i′ − 1. In essence, it is
not sufficient for a guest NSV to match a host node, but it
should also follow the arc present in the host EMM graph.
If a transition implied by the quasi-alignment does not occur
in the host EMM, its score is penalized [7]. The penalty, due
to unsupported transitions, has the effect of increasing the
distance between the two EMMs. It is computed as −log( 1

εi
)

where ε = 1
|V | where |V | represents the size or the number of

nodes in the host EMM. In cases where the transition is valid
in the host, the score is weighted by the probability of the
arc a(i′− 1, i′). In summary, with Vh and Vg as the number
of nodes in the host EMM and the guest graph respectively,
the distance d between host h and guest g is computed as:

d(h, g) = Σ|Vg|−1
i=0 (weight′i × scoreq)

weight′i = −log
(

1
ε′i

)
= −log(|Vh|) if unsupported arc

OR

= a(i′−1,i′) for supported arc

Where scoreq is the score of the quasi-alignment. The
distance measure thus computed is in fact a weighted Man-
hattan distance measure [14] which is found to obey the
conditions for a distance metric. Though not required of a
distance metric, we also validated the the four point rule
over a large number of datasets as it is required for a
evolutionary distance measure. The proof in its basic form is

presented in the appendix. A complete proof for the metric
is quite involved due to the different types of weights such
as scores, probabilities and penalties that are applied. As
such, complete proof is deferred as future work. The time
and space complexity of distance evaluation function can be
determined from the following algorithm:

1) Select the host state nearest to the guest state - this
produces a quasi-alignment.

2) Derive the difference of centroids into a centroid
vector.

3) Score each element in the difference centroid vector
and compute their sum.

4) Multiply each sum score with a penalty if the quasi-
alignment leads to a state without a supported transition
or arc.

5) Take the sum of the sum scores (adjusted for penalty)
to derive the one way distance.

Given number of nodes as |V | and |V ′| for both, time com-
plexity is O(2|V ||V ′|) and space complexity is O(|V |+|V ′|).
More generally, these may be expressed as O(|V 2|) and
O(2|V |) where |V | is the maximum of the number of nodes
in the two EMM graphs. Since this method is an all-against-
all distance evaluation based and is not based on alignment,
its time complexity compares favorably with the current
Multiple Sequence Alignments. There is no doubt that an
optimal multi sequence alignment is more desirable though it
is NP-hard [15]. More practical methods such as ClustallW
[16, 17] use progressive alignment methods for which the
time complexity is still O(mL+ L2) to which clustering
adds an additional term of (m2log(m)) where m and L



represent the number and length of the aligned sequences
respectively. While multi-sequence alignment basis offers
much in the way of understanding closely related microbial
taxa, analysis of similarity in a more diverse setting is the
goal of the method presented here. Indeed Metagenomic
samples present such diversity as well as the whole of
NCBI microbial taxonomy when required. The architecture
of distance evaluation function d(ei, ej) for EMMs may be
best described with Figure 2.
Karlin-Altschul proposed [11] a log-odds (LOD) Score for
scoring alignments along with a theorem supporting Gum-
bel extreme value distribution of LOD scores. Extending
the Karlin-Altschul statistics, quasi-alignments can also be
scored using LOD scores by use of dynamically built Score
Matrices for each EMM signtaure [7]. This has become
necessary since the alignment basis used in [11] deals with
a substitutive environment where one base is substituted
with another in an alignment. The substitution matrices
such as BLOSUM [18] and PAM [19] are widely used in
BLAST literature[20, 21]. Since EMMs use the frequency
form of bases and not the bases directly, its quasi-alignment
context deals with comparing numerical vectors of oligomer
frequencies and the EMM score matrix reflects the LOD
scores for occurrences of specific oligomer patterns. Using
the oligomer score matrices, each evaluation of an EMM
generates a series of quasi-alignments and the corresponding
difference scores which forms a difference distribution of
Gumbel scores [7]. In fact, statistical significance for each
quasi alignment can be computed using the difference score
d. Averaging the significance values across all quasi align-
ments of an evaluation generates a general significance [7].
Such measure can be used in validating phylogeny as well
in cases of unexpected associations found between unrelated
taxa, referred to as mis-associations.

IV. EXPERIMENTS AND RESULTS

The 16S rRNA Database utilized in this analysis is derived
from the NCBI Microbial Complete Genome Database [22].
The sequences were extracted from the annotated whole
genome sequence files using keyword searches. From this
data, a new database was built that consists of individual
files, one per microbial organism, in FASTA format. The
original dataset was derived from the NCBI as of August
2009 and consists of 782 organisms each with multiple 16S
sequences where applicable.
The FASTA header for each file contains five pieces of
information: phylum, class, genus, species and organism
name. We found that some of the header information in
the NCBI database was missing in some cases. There were
several cases of missing genus or even class information.
Since this type of information is used for verifying the
topological accuracy, such data is excluded from analysis.
The final database consisted of 676 organisms.
As a general process, the organism sequences of interest are
transformed into EMMs prior to further analysis. To show
the effectiveness and efficiency of the proposed sequence

differentiation, three experiments are performed. In the first
experiment, the genus Burkholedria is selected for its known
diversity [23] to study its phylogeny based on EMM dif-
ferentiation. The 16S rRNA sequences of organisms within
the genus are first transformed into separate EMM signatures
and then an all-to-all evaluation is performed resulting in a
distance matrix D. Given D,P,Q,R, S as a distance matrix
with P,Q,R & S as the organism indices, the validity of a
distance metric can be proved if the following conditions are
satisfied[24].

D(i, j) = 0 for all i = j

D(i, j) = D(j, i)
D(P, S) < = D(P,Q) +D(Q,S) and

D(P,Q) +D(R,S) = max(D(P,R) +D(Q,S),
D(P, S) +D(R,Q))

ambifariaM 0 13 32 667 302 10 62 60 300 60 24 232 176 299 55 300 354 82 20 215
ambifariaA 13 0 42 687 315 26 72 70 308 70 37 251 187 307 66 310 353 92 23 230
cenocepaci 32 42 0 709 345 38 99 96 346 96 55 310 235 345 92 347 425 73 41 290
cenocepaci 667 687 709 0 220 659 689 686 386 686 657 730 758 385 686 388 475 721 657 701
cenocepaci 302 315 345 220 0 302 303 301 138 304 301 357 429 137 300 138 278 334 301 346
cenocepaci 10 26 38 659 302 0 66 64 295 64 21 234 179 293 61 296 354 80 17 215
malleiATCC 62 72 99 689 303 66 0 2 290 2 62 249 213 289 5 292 343 57 63 228
malleiNCTC 60 70 96 686 301 64 2 0 287 0 60 245 210 286 3 289 340 54 61 225
malleiNCTC 300 308 346 386 138 295 290 287 0 287 297 360 468 1 287 3 182 328 295 357
malleiSAVP 60 70 96 686 304 64 2 0 287 0 60 245 210 287 3 289 341 54 61 225
multivoran 24 37 55 657 301 21 62 60 297 60 0 233 170 297 57 298 351 95 22 203
phymatumST 232 251 310 730 357 234 249 245 360 245 233 0 161 361 245 366 399 313 233 83
phytofirma 176 187 235 758 429 179 213 210 468 210 170 161 0 467 208 472 433 250 183 97
pseudomall 299 307 345 385 137 293 289 286 1 287 297 361 467 0 286 2 181 328 295 358
pseudomall 55 66 92 686 300 61 5 3 287 3 57 245 208 286 0 289 338 59 57 227
pseudomall 300 310 347 388 138 296 292 289 3 289 298 366 472 2 289 0 183 331 298 360
pseudomall 354 353 425 475 278 354 343 340 182 341 351 399 433 181 338 183 0 423 349 382
thailanden 82 92 73 721 334 80 57 54 328 54 95 313 250 328 59 331 423 0 88 294
vietnamien 20 23 41 657 301 17 63 61 295 61 22 233 183 295 57 298 349 88 0 215
xenovorans 215 230 290 701 346 215 228 225 357 225 203 83 97 358 227 360 382 294 215 0

The distance matrix shows the all-to-all evaluations of all organisms in the Burkholderia
genus. The distance metric used is based on EMM signature analysis of sequence
data. The conditions required for a distance metric[24] are 1)zeroes on the diagonal
2)symmetry 3) Triangle inequality and 4) Four point condition [25]. The distance
matrix and therefore the proposed metric satisfy all conditions of a distance metric.

Fig. 3. Distance Matrix using EMM Signature derived metric

The distance values in the matrix shown in Figure 3 were
verified to satisfy all the conditions for a distance metric and
thus presents a valid input for phylogeny. The phylogeny
is derived and shown in Figure 4 which is generated using
an improved version [26] of the neighbor joining method
included in the Phylogeny Inference Package (PHYLIP)
[27, 28]. Due to space constraints, the organism name ex-
cludes the prefix Burkholderia and includes only the first
10 characters of the remainder. For example, the organism
Burkholderia-ambifaria-MC40-6 is written as ambifaria.
As shown in Figure 4, the phylogeny for genus Burkholderia,
is in general, topologically accurate. This is indicated by the
fact that “similar organisms” are grouped together though
some exceptions do exist. It seems there is an unexpected as-
sociation between the species prefixed by Burkholdier-mallei,
Burkholdier-pseudomallei and Burkholdier-cenocepacia. Ex-
amining the distance matrix does indicate that some strains
are nearer to strains of other species than their own. We
investigated this to see if this was an artifact of how clus-
tering was employed in creating the EMM signature. First,
we noticed that the statistical significance value is very high
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The phylogeny of Burkholdier, generated using our distance metric, is shown. The
topological accuracy can be analyzed by verifying the placement of similar organisms.
With the exception of a few organisms, the topology is generally correct.

Fig. 4. Phylogeny of Burkholdier

between the pairs where an unexpected association appeared
to exist. To investigate this phenomenon, the clustering level
was increased in the EMM signature generation process by
increasing the Euclidean-threshold. The reason for this was to
encourage more clustering of near-similar sequence segments
while clearly separating the distinct ones. The resulting
distance matrix (not shown) provided much clarification of
the three genera. We further confirmed by building a multi-
sequence alignment and generating a distance matrix using a
modified Kimura-2 parameter model at the GreenGenes web
site [29] as shown in Figure 5.

Burkholderia-MSA
mallei-ATCC-23344 0 0.000007 0.002347 0.000007 0.000778 0.003132 0.003132
mallei-NCTC-10229 0.000007 0 0.002347 0.000007 0.000778 0.003132 0.003132
mallei-NCTC-10247 0.002347 0.002347 0 0.002347 0.003132 0.000778 0.000778
mallei-SAVP1 0.000007 0.000007 0.002347 0 0.000778 0.003132 0.003132
pseudomallei-1710b 0.000778 0.000778 0.003132 0.000778 0 0.002347 0.002347
pseudomallei-668 0.003132 0.003132 0.000778 0.003132 0.002347 0 0.000007
pseudomallei-K96243 0.003132 0.003132 0.000778 0.003132 0.002347 0.000007 0

mallei pseudomallei

This distance matrix is generated from a multi-sequence alignment using the Green-
Genes web site [29]. This matrix also shows that one of the B.psedumallei and B.mallei
organisms have larger distances from their own kind. As such, the distinct ones are
phylogenetically shown to be farther from the rest. For example, the B.pseudomallei-
1710b and B.mallei-NCTC-10247 are shown separated from their own kind. This
validates our method and the proposed metric.

Fig. 5. Clarifying distances by comparing to a Distance Matrix generated
using Multiple Sequence Alignment

Having shown a reasonable topological view of the diverse
Burkholderia genus, another experiment was performed us-
ing a randomly selected sample of organisms. This experi-
ment includes 5 phyla, 7 classes and 13 genera in the dataset.
The phylogeny is shown in Figure 6.
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A random sample representing 5 phyla, 7 classes and 13 genera is used to perform an
EMM signature differentiation. The distance matrix is then used to generate Phylogeny
based on BIONJ [26] algorithm using the PHYlogeny Inference Package [27] on the
web [28]. Except for Rickettsi group, all groupings are fully recovered. The Rickettsi1
or Rickettsia-bellii-RML369-C organism is known to have diverged out of the more
common Rickettsi genera for spotted fever and typhus [30] and hence its relative
disassociation.

Fig. 6. Phylogeny for a random sample of microbia

It is evident that similar organisms are grouped together in
the phylogeny shown in Figure 6. For example, the organisms
for Buchnera, Shewanella, Helicobact, Bartonell, Bacillus,
Streptococci, Actinoba, Thermotoga, Bacteroide are fully
recovered. The exceptions are the Rickettsi and Brucella. The
Brucella organisms actually belong to two different genera
and, indeed are distinct from each other by more than the
Bartonella group and hence the placement and they are
shown to share a common ancestor correctly. The Rickettsi
on the other hand isolates one organism from the other
two. Stothard et al proved [30] that the isolated organism
Rickettsi1 or Rickettsia-bellii-RML369-C has diverged out
of the other genera of Rickettsi much earlier. The distance
matrix for this group alone (Figure 7) clearly shows the
distinction in the Rickettsi sample.
Having shown the efficacy of EMM signature differentia-
tion of a random sample of microbial taxa in Figure 6,
a final experiment was performed to differentiate a more
diverse sample that includes microbia as well as organ-
isms of eukaryotic origin. This experiment adds an RNA
sequence (obviously not of 16S rRNA) of a brown dog tick
Rhipicephalus-sanguineus-synganglion, sand fly Normalized-
Phlebotomus-papatasi and mouse obtained from the NCBI
Refseq sites to a microbial sample consisting of 7 phyla, 8
classes and 10 genera. The phylogeny is shown in Figure
8 which clearly shows the proximity of all Bacillus and
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The distance matrix for the Rickettsi sample of three organisms clearly shows the
separation of Rickettsia-bellii-RML369-C from the other two belonging to the spotted
fever category. This accounts for diversity shown in the phylogeny of Figure 6.

Fig. 7. Diversity of Rickettsi

the nearest organism Staphylococcus while separating the
eukaryotic species brown dog tick, sand fly and mouse to
the out edges.
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The experiment shows phylogenetic relationship of the sample consisting of three
Eukaryotic RNA from tick (Rhipicephalus-sanguineus-synganglion), fly (Normalized-
phlebotomus-papatasi) and mouse and 12 microbia collection of 7 phyla, 8 classes
and 10 genera. The close grouping of Bacillus and the distantly co-located eukaryotic
species reflects the effectiveness of using EMM signature differentiation for phylogeny.

Fig. 8. Phylogeny of a diverse sample of microbia and some eukaryota

V. DISCUSSION AND CONCLUSION

Though 16S rRNA is the marker of choice for the majority
of microbial classification, its heterogeneity due to multiple
copies of the gene causes difficulties in differentiating organ-
isms when traditional methods are employed. We developed
a new sequence analysis approach using all the available
sequence copies of 16S rRNA of a microbial organism. First,
a compact model that includes the complex intra-sequence
order is generated using an Extensible Markov Model (Figure
1). Such compact models are called EMM signatures and

transforming organisms with all their 16S rRNA sequences
to EMM signatures creates a signature library. The library
can then be used for comparative genomic analysis such as
all-to-all differentiation. Evaluation of an EMM signature
against another is proposed to derive a unique and novel
distance metric (Figure 2). The distance metric obeys the
criteria proposed in [24] to ensure that the requirements of
identity, symmetry, triangular inequality and the four point
rule [25] are satisfied. Using the distance metric, we showed
how to generate distance matrices in a format compatible for
analysis with PHYlogeny Inference Package (PHYLIP) [27]
available on the web [28].
The NCBI sequence database for the 16S rRNA [22] is used
to build an EMM signature library for 500 organisms. Four
experiments were performed to verify the proposed method
and the metric. First, a diverse genus such as Burkholderia
of class Betaproteobacteria[23] was used to generate the
distance matrix (Figure 3). The phylogeny for Burkholderia
genus was derived using an improve neighbor joining algo-
rithm [31] called BIONJ [26] available as part of the PHYLIP
package [27] at [28]. The phylogeny shown in Figure 4 was
analyzed. The diversity of the genus is explored by examin-
ing the statistical significance of the mis-associations in cases
of B.mallei, B.pseudomallei and B.cencepia. The distance
matrix also confirmed the unusually high significance levels
for the mis-associations. We investigated this further by
increasing the clustering to further compress the signatures
to highlight the differentiation. The resulting partial distance
matrix in Figure 5 clearly showed that one of the organisms
from both B.mallei and B.pseudomallei are indeed distinct
and the proximity of a pair of organisms from both is
indicative of their co-evolution. Second, another experiment
was performed using a random sample consisting of 5 phyla,
7 classes and 13 genera and the phylogeny shown in Figure
6 confirms topological accuracy. The only exception seen is
due to Rickettsia-bellii which is found to have diverged much
earlier from the related organisms [30] and hence its isolation
from the rest in the figure. Third, another experiment with a
sample consisting of three eukaryotic RNA sequences from
brown dog tick, mouse and sand fly as well as 15 organisms
of microbial origin was performed. The resulting phylogeny
[Figure 8] clearly isolated the three eukaryotic sequences
and also showed the proximity of the bacillus and related
organisms.
Several approaches for phylogeny are in existence, but all
of them either require multi-sequence alignment or do not
use all of the available sequence information. Yet, new ap-
proaches are emerging proposing to use the whole genomes
and other markers such as RecA, RPOB, 23s rRNA [3, 32]
etc. Though we have shown the EMM method using the
multi-copy 16S marker, it is equally applicable to single
copy markers where the signature form representation and
alignment-free processing could improve space and time
complexities. Applying the EMM signature concept to profil-
ing sequence communities, Metagenomic classification and
diagnostic identification of strain level sequence data will be



included as future research areas.
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APPENDIX: DISTANCE D(e1, e2) IS A METRIC

The distance function in its simplest form only considers
the number of unsupported transitions when evaluating a
guest EMM against the host EMM. This is because when
the quasi alignments are associated with transitions that exist
in the host, the difference centroid tends to be zero or very
close to zero. On the other hand, when the quasi alignments
occur with no existing arc between the currently matched
host state and the previously matched state, a penalty equal
to −log(|Vh|) is applied as a weight. When quasi alignment
is established between a guest NSV and a host node, the
difference between their centroids generates a difference
vector. For scoring, each element in the vector is multiplied
by a score and all the scored elements are aggregated to
derive score. The component distance d(e1, e2) is a sum of
all scored quasi-alignments multiplied again by a penalty
of fixed value. If a score of unity is used, the score of
each quasi alignment becomes a standard Manhattan distance
multiplied by a constant penalty value. Thus d(e1, e2) is
also a Manhattan distance multiplied by a constant value.
Applying the same for d(e2, e1), the final distance D(e1, e2)
is derived by d(e1, e2)+d(e2, e1) which is again a Manhattan
distance multiplied by a constant penalty value. Since Man-
hattan distance is a known valid distance metric and adding
two Manhattan distances or multiplying a constant value still
upholds the metric attribute, our distance function D(e1, e2)
is also a distance metric.


