
Practical Applications of Locality Sensitive Hashing for
Unstructured Data

Introduction

Working with large amounts of unstructured data (e.g., text documents) has become
important for many business, engineering and scientific applications. The purpose of
this article is to demonstrate how the practical Data Scientist can implement a Locality
Sensitive Hashing system from start to finish in order to drastically reduce the time
required to perform a similarity search in high dimensional space (e.g., created by the
terms in the vector space model for documents). Locality Sensitive Hashing
dramatically reduces the amount of data required for storage and comparison by
applying probabilistic dimensionality reduction. In this paper we concentrate on the
implementation of min-wise independent permutations (MinHashing) which provides an
efficient way to determine an accurate approximation of the Jaccard similarity coefficient
between sets (e.g., sets of terms in documents) [2,3].

This article explains the concept of Locality Sensitive Hashing in practical terms
by:

1. Providing a very brief academic history

2. Explaining Locality Sensitive Hashing's general purpose and possible use cases

3. Introducing Minhashing

4. Describing the Jaccard similarity coefficient as an LSH measure of similarity

5. Demonstrating how to implement a simple Minhashing LSH system using C#

A Very Brief Academic History

The concept of Locality Sensitive Hashing has been around for some time now with
publications dating back as far as 1999 [1] exploring its use for breaking the curse
of dimensionality in nearest neighbor query problems. Since this time various
applications of Locality Sensitive Hashing have been making appearances in academic
publications all over the world. Even very successful technology companies like Google
have published improved LSH algorithms [2] using a consistent weighted sampling
method "where the probability of drawing identical samples for a pair of inputs is equal

Jake Drew

Computer Science and Engineering

Department

Southern Methodist University

Dallas, TX, USA

www.jakemdrew.com

jakemdrew@gmail.com

Michael Hahsler

Engineering Management, Information, and,

Systems Department

Southern Methodist University

Dallas, TX, USA

www.michael.hahsler.net
mhahsler@smu.edu

http://www.jakemdrew.com/

to their Jaccard similarity" [2]. In fact, college textbooks produced from some of
America's most prestigious universities like Stanford now include entire chapters
dedicated to finding similar items using Locality Sensitive Hashing [3].

However, well over ten years after the first publication, Data Scientists are still hard
pressed to find practical implementations of Locality Sensitive Hashing systems which
demonstrate why this concept is useful in "big data" applications, or how one would go
about creating such a system for finding similar items.

The Locality Sensitive Hashing Use Case

The exponential growth of data over the past twenty years has now created many
instances where searching for similar items using all of the available and relevant
information is not feasible or not fast. First, consider indexing all the web pages in
existence for the purpose of creating a new webpage search engine. One problem is to
make sure that the same content is not indexed multiple times. Identifying near identical
web pages by comparing a new page to all other pages would not be practical for a
number of reasons. The disk space to store all pages alone required for such a task
would be gigantic, and searches against such a large amount of data would prove very
inefficient when considering how fast the internet changes and grows.

Next, we will consider one additional form of unstructured data which is not quite as
obvious... Let us now consider a gene sequence. Imagine breaking apart a gene
sequence's text into smaller chunks for the purposes of machine learning and finding
other similar sequences. To provide personalized medication, you may be trying to
identify a virus using a gene sequence, or you are looking at partitions of an entire
human genome to rapidly find segments which may contain high similarity to a known
genetic mutation. Even if we created "smaller chunks" of only 100 characters in length,
starting at each position within the entire gene sequence's text, a gene sequence
containing only 4 unique characters A, C, T, and G could generate more than 10^60
possible unique values. On the surface, this may not sound like a "big data"
problem. However, we could all agree that even a reduced version of such a model
would not fit on a lap top for use in a remote village in Africa.

Locality Sensitive Hashing can be used to address both of the challenges described
above. It is a technique for fitting data with a very large feature spaces into unusually
small places. Likewise even smaller feature spaces can also benefit from the use of
Locality Sensitive Hashing by drastically reducing required search times and disk space
requirements. Instead of storing and searching against all available raw data or even
random samples of all raw data, we can use LSH techniques to create very compact
signatures which replace storing all of the features typically required for such
searches. For example, in the case of displayed webpage text, all displayed text tokens
sampled from a document now become a small collection of integers which will be
stored and used for all subsequent similar webpage comparisons.

Using the signatures produced by Locality Sensitive Hashing exponentially reduces
both storage space and processing time requirements for similar item searches.

Introduction to Minhashing

A form of Locality Sensitive Hashing called Minhashing reduces feature space size
using a family of random hashing functions to hash each individual piece of raw input
data retaining only the minimum values produced by each unique hashing function.

Wait a minute...? What did he just say...? What does this actually mean...?

Let us start with a very practical example. I am using this next example for simplicity
only. I do not recommend that it is the best way to go about comparing text documents
for similarity... I have written one article with text tokenization examples
using MapReduce [4] style processing and a second article using N-grams [5] which
provide additional details on this topic. For this example however, imagine that we are
tokenizing documents into individual words or other token forms by whatever process
we use. If we wanted to compare our documents for similarity using this strategy, we
would have to maintain a collection of all words produced during tokenization by
document, and the frequency that each word occurred as well (for frequency weighted
calculations). This "word" collection would quickly grow in size as the number of
documents increased. In addition, the average length of documents would also impact
the size of this collection. In this example our "feature space" size is dictated by the
number of unique words we encounter, the number of unique documents we process,
and the average length of each document. Using the Minhashing process, the "feature
space" described above could be drastically reduced both shrinking the size of our
unique "word" collection and the time required to perform document similarity searches
against it.

Here are the basic steps for implementing a Minhashing system:

1. The first step in implementing a Minhashing system is to create a family of unique
hashing functions.

2. Each word or text token identified during tokenization will be hashed by each
unique hashing function.

3. The minimum hash value produced by each unique hashing function for all words
within each document processed will be retained within a minimum hash signature
representing the unique characteristics of each document processed.

4. The minimum hash signatures for each document can be intersected to produce
an accurate approximation of the Jaccard similarity coefficient [2,3].

5. Longer minimum hash signatures (i.e. additional unique hashing functions) will
produce more accurate approximations of the Jaccard similarity coefficient [3].

What this means is that given a collection of 300 unique hashing functions, a 2500 word
document now becomes a minimum hash signature containing only 300 integer
values. Integer values are not only typically smaller than words, but the total number of

http://jakemdrew.wordpress.com/2013/01/08/mapreduce-map-reduction-strategies-using-c/
http://jakemdrew.wordpress.com/2013/04/23/mapreduce-for-n-grams-using-c/

items representing the document is now magnitudes of order smaller than its original
form.

Measuring the Similarity between Two Minhash Signatures

The Jaccard similarity coefficient between two sets S and T is calculated by dividing the
intersection of the sets S and T by the union of sets S and T:

 ()

However, the Jaccard similarity between two sets can simply be approximated by
intersecting the values between two minhash signatures [3]. For additional explanation
and reading on this topic see section 3.3.3 pg. 80-81 in [3]. To state this in layman's
terms, two minhash signatures including 300 minimum hash values from 300 unique
hashing functions with 300 matching values between both signatures would be 100%
similar while two sets with 150 matching out of 300 total values would be only 50%
similar.

Implementing a Simple LSH System using Minhashing and C#

Creating a family of n unique hashing functions may sound complicated. However, I
was able to create the following function in C# using only a couple of lines of
code. John Skeet's post [6] explains the logic behind this approach in more detail,
although my version has been slightly modified to seed each hash function call with two
random numbers. Using two random numbers in this way decreases the overall chance
of creating hash functions with duplicated seeds. In fact, potential for this event can be
eliminated altogether by using a hashset to ensure that only unique random number
seeds are selected. It is also important to note that any data type could be used
for hashing purposes since a C# generic input data type is used for the inputData
parameter in the Figure 1 example shown below.

public static int LSHHash<T>(T inputData, int seedOne, int seedTwo)
{
 unchecked // Overflow is fine, just wrap
 {
 int hash = (int)2166136261;
 hash = hash * 16777619 ^ seedOne.GetHashCode();
 hash = hash * 16777619 ^ seedTwo.GetHashCode();
 hash = hash * 16777619 ^ inputData.GetHashCode();
 return hash;
 }
}

Figure 1 - Function seeded with random numbers to produce any number of unique hashing functions.

The hashing method used above is an FVN hash [7] which uses XOR bit shifting to
create the seeded hash values. This hashing method has a very low chance of
collision. While it works exceptionally well for demonstration purposes, it may be

http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx#fnv

possible to achieve more accurate LSH search results by choosing a hashing method
which has a higher probability for producing collisions between tokens with similar
values. In practice, this is sometimes accomplished by creating a thin layer process
directly before hash execution which intentionally converts similar tokens within a given
threshold to the same value prior to hashing [8]. This approach is left as an
independent exercise for the reader.

Using the LSHHash() function above, any number of unique hashing functions can be
created by simply selecting and saving random number pairs to be used as seed
values. For example, to create a family of 300 unique random hashing functions, the
code below can be used to select 300 random number seed pairs. The 300 seed pairs
are always used in the exact same order to produce minhash signature values during
the minhashing process. For high performance applications, the hash code for each
random number seed selected could be saved in order to avoid calculating the seed's
hash code using the GetHashCode() method each time the hashing function is
called. In this scenario, the actual hash code value for the seedOne and seedTwo input
parameters would be passed into the function instead of the random seed's original
value.

private void createMinhashSeeds()
{
 HashSet<int> skipDups = new HashSet<int>();
 Random r = new Random();
 for (int i = 0; i < minhashes.Length; i++)
 {
 Tuple<int, int> seed = new Tuple<int, int>(r.Next(), r.Next());

 if (skipDups.Add(seed.GetHashCode()))
 minhashes[i] = seed;
 else
 i--; //duplicate seed, try again
 }

}

Figure 2 - Function used to generate any number of random seed pairs used to create a family of random hashing

functions.

Each pair of hash seeds above is saved in a minhash array. The length of this array is
always equal to the minhash signature's length. For instance, when hashing function
number one is needed, the seed pair from position zero within the minhashes array is
provided as input to the LSHHash() function described above.

Creating a Minhash Signature

Once a family of random hashing functions has been created, minhash signatures can
quickly be generated using any collection of input data. The function in Figure 3
illustrates a minhash signature being created using a collection of integers. However,
since a hash code can be generated using any data type, the input data could just as
easily be a collection of strings, objects, or even binary data containing videos or

images. This particular characteristic makes minhashing useful for application in a
number of different feature reduction scenarios.

public int[] getMinHashSignature(int[] tokens)
{
 //Create a new signature initialized to all int max values
 int[] minHashValues = Enumerable.Repeat(int.MaxValue, signatureSize).ToArray();
 HashSet<int> skipDups = new HashSet<int>();
 //Go through every single token skipping duplicates
 foreach (var token in tokens)
 { //We do not want to hash the same token value more than once...
 if (skipDups.Add(token))
 { //Hash each unique token with each unique hashing function
 for (int i = 0; i < signatureSize; i++)
 { //Use the same seeds everytime for each hashing function!!!
 Tuple<int,int> seeds = minhashes[i];
 int currentHashValue = LSHHash(token, seeds.Item1, seeds.Item2);
 //Only retain the minimum value produced by each unique hashing function.
 if (currentHashValue < minHashValues[i])
 minHashValues[i] = currentHashValue;
 }
 }
 }
 return minHashValues;

 }

}

Figure 3 - This function generates a minhash signature using a collection of integers as input.

The getMinHashSignature() function takes a collection of any number of integers as
input, and then each integer within the collection is hashed by each unique hashing
function used to create the minhash signature. Duplicate integer values are also
skipped as we can be certain that they will not result in the production of a new
minimum hash value. Once again, this collection of integers could just as easily be
words pulled from a webpage, gene sequence tokens, objects, or any other type of
input data. It is also important to notice that this is where the feature space reduction
takes place.

A Simple Minhashing Demo Application

In the example application for this article, we generate 10 collections containing up to
100,000 integers within each collection. The example application creates a single
integer collection called the query which is then compared to each of the 10
integer collections previously mentioned which we will now call the documents. The
lengths of the individual collections have been randomly determined to better mimic real
world similar item searches. First, the Jaccard similarity is calculated between the
query and the documents collections as a similarity benchmark. Next, the query and
the document collections are all minhashed to create one minhash signature for
each collection. For this example we use a family of 400 random hashing functions.
After minhashing occurs, only 400 minimum hash values remain within each collection
of integers resulting in a dramatic feature space reduction. Finally, the Jaccard

similarity is estimated using only the 400 minhash values for each document. The
results are shown in Figure 4 below.

 Actual Jaccard Time in Ticks Minhash Jaccard Time in Ticks

Document 1 0.426 17,498 0.410 559

Document 2 0.422 4,270 0.440 107

Document 3 0.310 2,951 0.323 103

Document 4 0.334 3,240 0.328 107

Document 5 0.420 4,118 0.395 89

Document 6 0.294 4,438 0.305 87

Document 7 0.327 3,175 0.313 86

Document 8 0.326 4,180 0.333 87

Document 9 0.246 2,482 0.248 85

Document 10 0.384 3,695 0.385 87

* 1 millisecond = 10,000 Ticks

Figure 4 - Similar Jaccard similarity values can be seen for each document before and after minhashing occurs.

When using a minimum hash signature including 400 unique hashing functions, the
Locality Sensitive Hashing process retains both the highest and lowest scoring
document rankings. Nine similarity values are less than 3 percentage points in
difference after minhashing occurs with a single document's score (#8) showing a 5
percentage points difference. Increasing the number of hashing functions used will also
create more accurate minhash similarity approximations, if required. The total number
of collection items prior to minhashing includes 72,476 integers. After minhashing, this
count is reduced to only 4,400 items which includes 400 integer values for each of the
11 total collections which were minhashed. Since the example application generates
new collections using random numbers, similar results can consistently be seen when
executing the program repeatedly against the different random number collections
created.

Conclusion

Locality Sensitive Hashing offers the opportunity for substantial feature space reduction
when creating a similar item search system. Both large and small systems can benefit
from LSH processing since reduced feature spaces offer dramatic reductions in overall
search times and disk space requirements. When reviewing the empirical example
presented above, the reduced feature space produces very good Jaccard similarity
estimates while minhashing reduces the needed data by more than an order of
magnitude.

Resources

 Please feel free to learn more about me at: http://www.jakemdrew.com/
 The C# Minhasher class code can be viewed

here: http://jakemdrew.com/blog/minhasher.htm
 All programming code used for this article including the entire Visual Studio

solution can be downloaded here: http://jakemdrew.com/blog/lshexamples.zip

References

1. Gionis, Aristides et al, "Similarity Search in High Dimensions via
Hashing", http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Gionis...
, accessed on 05/04/2014.

2. Ioffe, Sergey, "Improved Consistent Sampling, Weighted Minhash and L1
Sketching", http://static.googleusercontent.com/media/research.google.com/en/us
/pubs/archive/36928.pdf, accessed on 05/04/2014.

3. Leskovec, Jure et all, Mining of Massive Datasets, "Finding Similar
Items",http://infolab.stanford.edu/~ullman/mmds/ch3.pdf, accessed on 05/04/2014.

4. Drew, Jake, MapReduce / Map Reduction Strategies Using
C#, http://jakemdrew.wordpress.com/2013/01/08/mapreduce-map-reduction-
strategies-using-c/ on 05/04/2014.

5. Drew, Jake, Creating N-grams Using
C#, http://jakemdrew.wordpress.com/2013/04/23/mapreduce-for-n-grams-using-c/,
accessed on 05/04/2014.

6. Skeet, John, What is the best algorithm for an overridden
System.Object.GetHashCode, http://stackoverflow.com/questions/263400/what-is-
the-best-algorithm-for-an-overridden-system-object-gethashcode, accessed on
05/04/2014.

7. Walker, Julienne, FVN
Hash, http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx,
accessed on 05/04/2014.

8. J. Buhler., Efficient large-scale sequence comparison by locality-sensitive
hashing. http://bioinformatics.oxfordjournals.org/content/17/5/419.full.pdf,
accessed on 05/04/2014.

http://www.jakemdrew.com/
http://jakemdrew.com/blog/minhasher.htm
http://jakemdrew.com/blog/lshexamples.zip
http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Gionis.pdf
http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Gionis.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36928.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36928.pdf
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf
http://jakemdrew.wordpress.com/2013/01/08/mapreduce-map-reduction-strategies-using-c/
http://jakemdrew.wordpress.com/2013/01/08/mapreduce-map-reduction-strategies-using-c/
http://jakemdrew.wordpress.com/2013/04/23/mapreduce-for-n-grams-using-c/
http://stackoverflow.com/questions/263400/what-is-the-best-algorithm-for-an-overridden-system-object-gethashcode
http://stackoverflow.com/questions/263400/what-is-the-best-algorithm-for-an-overridden-system-object-gethashcode
http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
http://bioinformatics.oxfordjournals.org/content/17/5/419.full.pdf

