
Strand: Fast Sequence Comparison using MapReduce and
Locality Sensitive Hashing

Jake Drew
Computer Science and Engineering Department

Southern Methodist University
Dallas, TX, USA

www.jakemdrew.com
jdrew@smu.edu

Michael Hahsler
Engineering Management, Information, and,

Systems Department
Southern Methodist University

Dallas, TX, USA
mhahsler@smu.edu

ABSTRACT
The Super Threaded Reference-Free Alignment-Free N-
sequence Decoder (Strand) is a highly parallel technique for
the learning and classification of gene sequence data into
any number of associated categories or gene sequence tax-
onomies. Current methods, including the state-of-the-art
sequence classification method RDP, balance performance
by using a shorter word length. Strand in contrast uses a
much longer word length, and does so efficiently by imple-
menting a Divide and Conquer algorithm leveraging MapRe-
duce style processing and locality sensitive hashing. Strand
is able to learn gene sequence taxonomies and classify new
sequences approximately 20 times faster than the RDP clas-
sifier while still achieving comparable accuracy results. This
paper compares the accuracy and performance characteris-
tics of Strand against RDP using 16S rRNA sequence data
from the RDP training dataset and the Greengenes sequence
repository.

1. INTRODUCTION
Many popular gene sequence analysis tools are based on

the idea of pairwise sequence alignment [16, 19]. Sequence
alignment finds the least costly transformation of one se-
quence into another using insertions, deletions, and replace-
ments. This method is related to the well know distance
metric called Levenshtein or edit distance. However, finding
the optimal pairwise alignment is computationally expensive
and requires dynamic programming.

Gene sequence words are sub-sequences of a given length.
In addition to words they are often also refered to as k-
mers or n-grams, where k and n represent the word length.
Words are extracted from individual gene sequences and
used for similarity estimations between two or more gene
sequences [21]. Methods like BLAST [1] were developed for
searching large sequence databases. Such methods search
for seed words first and then expand matches. These so-
called alignment-free methods [21] are based on gene se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BCB ’14 , September 20 - 23 2014, Newport Beach, CA, USA
Copyright 2014 ACM 978-1-4503-2894-4/14/09 ...$15.00.

quence word counts and have become increasingly popu-
lar since the computationally expensive sequence alignment
method is avoided. One of the most successful word-based
methods is the RDP classifier [22], a naive Bayesian classifier
widely used for organism classification based on 16S rRNA
gene sequence data.

Numerous methods for the extraction, retention, and
matching of word collections from sequence data have been
studied. Some of these methods include: 12-mer collec-
tions with the compression of 4 nucleotides per byte using
byte-wise searching [1], sorting of k-mer collections for the
optimized processing of shorter matches within similar se-
quences [11], modification of the edit distance calculation to
include only removals (maximal matches) in order to per-
form distance calculations in linear time [20], and the use
of locality sensitive hashing for inexact matching of longer
k-mers [5].

This research combines the following three primary contri-
butions in a novel and innovative way to achieve the results
presented:

1. Jaccard similarity is used as an approximation for edit
distance when determining the similarities and differ-
ences between gene sequence data.

2. A form of locality sensitive hashing called minhashing
is used to rapidly process much longer word lengths for
enhanced accuracy. Minhashing allows us to estimate
Jaccard similarity without computing and storing in-
formation for all possible words extracted from a gene
sequence. Instead, we use the intersection of the min-
hash signatures produced during the minhashing pro-
cess to quickly calculate an accurate approximation of
the Jaccard similarity between sequences and known
taxonomy categories.

3. A MapReduce style parallel pipeline is used to simulta-
neously identify unique gene sequence words, minhash
each word generating minhash signatures, and inter-
sect minhash signatures to estimate Jaccard similarity
for highly accurate and efficient identification of gene
sequence taxonomies.

Buhler [5] previously used locality sensitive hashing to al-
low for inexact matches between longer words of a predefined
length. We use locality sensitive hashing in a very different
way as a selection strategy for performing exact word match-
ing when the number of possible words becomes much too
large to store. For example, with an alphabet of 4 symbols,

the number of unique words of length 60 is 460 which is al-
ready more than 1036 distinct words. The RDP classifier
utilizes a fixed word length of only 8 bases to perform its
taxonomy classification processing making the total possi-
ble number of unique words (i.e., features for the classifier)
only 48 = 65, 536 words [22].

Strand is able to very rapidly classify sequences while still
taking advantage of the increased accuracy provided by ex-
tracting longer words. Using the much larger possible fea-
ture space provided by a longer word length combined with
locality sensitive hashing to reduce memory requirements,
Strand achieves classification accuracy similar to RDP in
processing times which are magnitudes of order faster. All
stages of Strand processing are highly parallelized, concur-
rently mapping all identified words from a gene sequence and
reducing mapped words into minhash signatures simultane-
ously. The unique relationship of Jaccard similarity between
sets and locality sensitive hashing [17] allows minhashing to
occur during learning, storing only a predetermined number
of minimum hash values in place of all words extracted from
the gene sequences in the learning set. This process reduces
the amount of memory used during learning and classifica-
tion to a manageable amount.

2. BACKGROUND
This paper combines the three concepts of longer length

word extraction, minhashing, and multicore MapReduce
style processing in a novel way that produces superior gene
sequence classification results. The following sections briefly
describe the background material relevant to this research.

2.1 Word Extraction
The general concept of k-mers or words was originally de-

fined as n-grams during 1948 in an information theoretic
context [18] as a subsequence of n consecutive symbols. We
will use the terms words or k-mers in this paper to re-
fer to n-grams created from a gene sequence. Over the
past twenty years, numerous methods utilizing words for
gene sequence comparison and classification have been pre-
sented [21]. These methods are typically much faster than
alignment-based methods and are often called alignment-
free methods. The most common method for word extrac-
tion uses a sliding window of a fixed size. Once the word
length k is defined, the sliding window moves from left to
right across the gene sequence data producing each word by
capturing k consecutive bases from the sequence.

Strand performs word extraction using lock-free data
structures to identify unique gene sequence words. This
method is similar to other highly parallel word counting
tools such as Jellyfish [14]. Traditionally, computation-
ally expensive lock objects are used in parallel programs to
synchronize thread-level access to a shared resource. Each
thread must either acquire the lock object or block until it
becomes available prior to entering critical sections of code.
Lock-free data structures avoid the overhead associated with
locking by making use of low-level atomic read/write trans-
actions and other lock-free programming techniques.

2.2 Minhashing
In word-based sequence comparison, sequences are often

considered to be sets of words. A form of locality sensi-
tive hashing called minhashing uses a family of random hash
functions to generate a minhash signature for each set. Each

hash function used in the family of n hash functions im-
plement a unique permutation function, imposing an order
on the set to be minhashed. Choosing the element with
the minimal hash value from each of the n permutations of
the set results in a signature of n elements. Typically the
original set is several magnitutes larger than n resulting in
a significant reduction of the memory required for storage.
From these signatures an estimate of the Jaccard similarity
between two sets can be calculated [2, 17]. Minhashing has
been successfully applied in numerous applications including
estimating similarity between images [3] and documents [2],
document clustering on the internet [4], image retrieval [8],
detecting video copies [6], and relevant news recommenda-
tions [13].

In this paper we apply minhashing to estimate the simi-
larity between sequences which have been transformed into
very large sets of words.

2.3 MapReduce Style Processing
MapReduce style programs break algorithms down into

map and reduce steps which represent independent units of
work that can be executed using parallel processing [7, 10].
Initially, input data is split into many pieces and provided
to multiple instances of the mapping functions executing in
parallel. The result of mapping is a key-value pair including
an aggregation key and its associated value or values. The
key-value pairs are redistributed using the aggregation key
and then processed in parallel by multiple instances of the
reduce function producing an intermediary or final result.

MapReduce is highly scalable and has been used by large
companies such as Google and Yahoo! to successfully man-
age rapid growth and extremely massive data processing
tasks [15]. Over the past few years, MapReduce processing
has been proposed for use in many areas including: ana-
lyzing gene sequencing data [15], machine learning on mul-
tiple cores [12], and highly fault tolerant data processing
systems [7,9].

Strand uses MapReduce style processing to quickly map
gene sequence data into words while simultaneously reduc-
ing the mapped words from multiple sequences into their
appropriate corresponding minhash signatures.

3. LEARNING CATEGORY SIGNATURES
Figure 1 illustrates a high-level process of the Strand

MapReduce pipeline including both the mapping of gene
sequence data into words, the reduction of words into min-
imum hash values, and finally, the last reduce step which
organizes the minhash signatures by category. In the fol-
lowing we will describe each stage in detail.

3.1 Mapping Sequences into Words
The input data are sequences with associated categories.

Definition 1 (Sequence). Let S be a single input
sequence, a sequence of |S| symbols from alphabet Σ =
{A,C,G, T}.

Definition 2 (Category). Let C be the set of all L
known taxonomic categories and cl ∈ C be a single cate-
gory where l = {1, 2, . . . , L}. Each sequence S is assigned a
unique true category cl ∈ C.

The goal of mapping sequences into words is to create for
each sequence a word profile.

Figure 1: High-level Diagram of the Strand MapReduce Style Pipeline.

Definition 3 (Sequence Word Profile). Let S de-
note the word profile of sequence S, i.e., the set of all words
sj ∈ S, j = {1, 2, . . . , |S|}, with length k extracted from se-
quence S.

3.2 Creating Sequence Minhash Signatures
As words are produced, minhashing operations are also

performed simultaneously in parallel to create minhash sig-
natures.

Definition 4 (Sequence Minhash Signature).
Minhashing (min-wise locality sensitive hashing) applies a
family of random hashing functions h1, h2, h3...hk to the
input sequence word profile S to produce k independent
random permutations and then chooses the element with
the minimal hash value for each. We define the minhash
function:

minhash: s|S| ⇒ Zk
+

which maps a sequence word profile of size |S| to a set of k
minhash values M = {m1,m2, . . . ,mk}, called the minhash
signature.

Min-wise locality sensitive hashing operations are per-
formed in parallel and continually consume all randomly
selected word hashes for each processed sequence. The min-
hash signature’s length is predetermined by the number of
random hashing functions used during minhash processing,
and the minhash signature length impacts processing time

and overall classification accuracy. Processes using more
hashing functions (i.e., longer minhash signatures) have been
proven to produce more accurate Jaccard estimations [17].
However, careful consideration must be given to the trade-
off between the minhash signature’s impact on performance
and Jaccard estimation accuracy.

A thread-safe minhash signature collection contains one
minhash signature for each unique input sequence. Dur-
ing minhash processing, all hash values produced for each
sequence’s unique set of word hashes are compared to the
sequence’s current minhash signature values. The minimum
hash values across all unique words for each sequence and
each unique hashing function are then retained within each
sequence’s final minhash signature. In applications where
the similarity calculation incorporates word length or the
frequency of each minimum hash value, the length and fre-
quency for any word resulting in a particular minimum hash
value can also be contained as additional properties within
each minhash signature’s values. However, lengths are not
retained within the Strand data structure during training
since they can quickly be determined during any subsequent
classification’s minhashing process. In some cases, the total
number of hashing functions and overall minhashing opera-
tions can be reduced by saving the n smallest hash values
generated from each individual hashing function. For in-
stance, the number of hashing operations can be cut in half
by retaining the 2 smallest values produced from each unique
hashing function.

3.3 Reducing Sequence Minhash Signatures
into Category Signatures

Next we discuss how to represent an entire category as a
signature built from the minhash signatures of all sequences
in the category.

Definition 5 (Category Minhash Signature).
We define the category minhash signature of category cl ∈ C
as the union of the sequence minhash signatures of all
sequences assigned to category cl:

Cl =
⋃
S∈cl

minhash(S),

where the union is calculated for each minhash hashing
function separately.

The Strand data structure actually represents an array
containing one data structure for each unique hashing func-
tion used (see Figure 1). Since this structure is keyed using
minhash values, hash function partitions must exist to sep-
arate the minhash values produced by each unique hashing
function. Within each individual hash function partition, a
collection of key-value pairs (kvp) exists which contains the
minhash value as a key and then a second nested collection
of categorical key-value pairs for each value. The nested
collection of kvp-values contains all category numbers and
associated frequencies (when required) that have been en-
countered for a particular minhash value. In practice how-
ever, minhash values seldom appear to be associated with
more than one taxonomy category which drastically reduces
the opportunity for imbalance between categories, especially
when minhash value frequencies are not used within the clas-
sification similarity function.

During learning, minimum hash values for each unique
hashing function are retained within the array of nested cat-
egorical key-value pair collections and partitioned by each
unique hashing function. Each hash function’s collection
contains all unique minimum hash values, their associated
taxonomies, and optional frequencies. Using the Strand data
structure, minhash signatures for each input data sequence
can quickly be compared to all minimum hash values as-
sociated with each known taxonomy including the taxon-
omy frequency (when utilized) during classification. During
training, each value in the input data sequence’s minhash
signature is reduced into the Strand data structure by ei-
ther creating a new entry or adding additional taxonomy
categories to an existing entry’s nested categorical key-value
pair collection.

All results presented in this research were achieved us-
ing only a binary classification similarity function. This ap-
proach produced optimal performance while still achieving
comparable accuracy results when benchmarked against the
current top performer in this domain.

4. CLASSIFICATION PROCESS
The MapReduce style architecture used for learning and

classification are very similar. While the process of map-
ping words into minhash signatures is identical, the reduce
function now instead of creating category signatures creates
classification scores.

The word profiles of sequences are the set of words con-
tained within the sequences. A common way to calculate

the similarity between sets is the Jaccard index. The Jac-
card index between two sequence word profiles S1 and S2 is
defined as:

Jaccard(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

However, after minhashing we only have the sequence min-
hash signaturesM1 = minhash(S1) andM2 = minhash(S2)
representing the two sequences. Fortunately, minhash-
ing [17] allows us to efficiently estimate the Jaccard index
using only the minhash signatures:

Jaccard(S1,S2) ≈ |minhash(S1) ∩minhash(S2)|
k

,

where the intersection is taken hash-wise, i.e., how many
minhash values agree between the two signatures.

Next, we discuss scoring the similarity between a sequence
minhash signature and the category minhash signatures used
for classification. Category signatures are not restricted to
k values since they are created using the unique minhash
values of all sequence minhash signatures belonging to the
category. This is why we do not directly estimate the Jac-
card index, but define a similarity measure based on the
number of collisions between the minhash values in the se-
quence signature and the category signature.

Definition 6 (Minhash Category Collision). We
define the Minhash Category Collision between a sequence
S represented by the minhash signature M and a category
signature C as:

MCC(M, C) = |M ∩ C|,
where the intersection is calculated for each minhash hash-

ing function separately.

We calculate MCC for each category and classify the se-
quence to the category resulting in the largest category col-
lision count.

Many other more sophisticated approaches to score se-
quences are possible. These are left for future research.

5. RESULTS
In this section we report on a set of initial experiments.

First, we compare different word sizes and numbers of se-
quence signature lengths (i.e., the number of hashing func-
tions used for minhashing). Then we compare Strand with
RDP using two different data sets.

The data sets we use are all 16S rRNA data sets. The RDP
classifier raw training set was obtained from the RDP down-
load page1. It contains 9,217 sequences. The second data
set we use is extracted from the Greengenes database2. We
randomly selected 150,000 unaligned sequences with com-
plete taxonomic information for our experiments. We used
for all experiments 10-fold cross-validation. During 10-fold
cross-validation, the entire training file is randomly shuffled
and then divided into ten equally sized folds or segments.
While nine folds are learned, one fold is held out for classi-
fication testing. This process is repeated until all ten folds
have been held out and classified against.
1http://sourceforge.net/projects/rdp-classifier/
2http://greengenes.lbl.gov

http://sourceforge.net/projects/rdp-classifier/
http://greengenes.lbl.gov

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 50 100 150 200 250

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Word Length at Signature Size = 300

Genus

Overall

Figure 2: Strand word size accuracy on RDP 16S rRNA.

The experiments were performed on a Windows 8 (64-bit)
machine with a 2.7 Ghz Intel i7-4800MQ quad core CPU and
28 GB of main memory installed. For the RDP classifier we
used version 2.5 (rdp-classifier-2.5.jar), and we implemented
Strand in C#.

5.1 Choosing Word Size and Signature
Length

Both, the used word size and the length of the signature
need to be specified for Strand. We expect both parameters
to have an impact on classification accuracy, space, and run
time. While it is clear that with increasing signature lengths
also the time needed to compute sequence signatures and
the space needed to store signatures increases, the impact of
word size is not so clear. In the following we will empirically
find good values for both parameters.

To look at the impact of the word length, we set the signa-
ture size (i.e., number of hash functions used for minhashing)
to 300. This was empirically found to be a reasonable value.
Next we perform 10-fold cross-validation on the RDP train-
ing data for different word lengths ranging from 8 bases to
200 bases. The average accuracy of Genus prediction and
overall prediction (average accuracy over all phylogenetic
ranks) depending on the word length is shown in Figure 2.
We see that accuracy increases with word length till the
word length reaches 60 bases and then starts to fall quickly
at lengths larger than 100 bases. This shows that the opti-
mal word length for the used 16S rRNA is around 60 bases.

Next, we look at the impact of sequence signature length.
We use a fixed word size of 60 and perform again 10-fold
cross-validation on the RDP training data set using signa-
ture lengths from 50 to 500. Figure 3 shows the impact of
signature length. Accuracy initially increases with signa-
ture length, but flattens at about 300. Since an increased
signature length directly increases run time (more hashes
need to be calculated) and storage, we conclude that 300 is
the optimal size for the used 16S rRNA data, but signature
lengths of 200 or even 100 also provide good accuracy at
lower computational cost.

While Strand allows users to specify word and signature
sizes, empirically finding good values for both parameters

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0 100 200 300 400 500 600

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Signature Size at Word Length = 60

Genus

Overall

Figure 3: Strand signature length accuracy on RDP
16S rRNA.

need not be performed with each use of the application.
We believe the results presented show that using the Strand
default word size of 60 bases and a signature size of 300 will
produce optimal results on 16S rRNA sequence data.

5.2 Comparison of Strand and RDP on the
RDP Training Data

In this section we compare Strand and RDP in terms of
run time and accuracy. For the comparison we use again
10-fold cross-validation on the RDP training data set. Ta-
ble 1 shows the run time for learning and classification using
Strand and RDP. While the learning times for Strand are ap-
proximately 30% faster, Strand classifies sequences almost
20 times faster than RDP. Strand trained with 8,296 se-
quences averaging around 23 seconds per fold while RDP
averaged around 33 seconds on the same 8,296 training se-
quences. During 10-fold cross-validation, Strand was able
to classify 921 sequences averaging 3 seconds per fold while
RDP’s average classification time was 59 seconds per fold.
This is substantial since classification occurs much more fre-
quently than training in a typical application. Since Strand
uses longer words during training and classification, no boot-
strap sampling or consensus is used to determine taxonomy
assignments. Strand greatly increases classification speeds
when compared to RDP by combining this factor with a
highly parallel MapReduce style processing pipeline.

An accuracy comparison between Strand and RDP is
shown in Table 2. In cross-validation it is possible that we
have a sequence with a Genus in the test set for which we
have no sequence in the learning set. We exclude such se-
quences from the results since we cannot predict a Genus
which we have not encountered during learning. Strand
achieves similar overall accuracy to RDP, however, as we
saw above in a fraction of the time.

5.3 Comparison of Strand and RDP on the
Greengenes Data

Here we compare Strand and RDP on a sample of 150,000
sequences from the Greengenes project. While the RDP
training set is relatively small and well curated to create

Fold Learning Sequences Classification Sequences
Time Learned Time Classified

Strand Performance Results
1 0:19 8,296 0:03 921
2 0:22 8,296 0:03 921
3 0:22 8,296 0:03 921
4 0:23 8,296 0:03 921
5 0:24 8,296 0:03 921
6 0:25 8,296 0:03 921
7 0:24 8,296 0:04 921
8 0:25 8,296 0:03 921
9 0:24 8,296 0:03 921
10 0:23 8,296 0:03 921

Avg. 0:23 0:03
RDP Performance Results

1 0:33 8,296 0:58 921
2 0:33 8,296 0:58 921
3 0:33 8,296 0:59 921
4 0:33 8,296 0:59 921
5 0:34 8,296 1:00 921
6 0:34 8,296 0:59 921
7 0:33 8,296 0:59 921
8 0:33 8,296 0:58 921
9 0:32 8,296 0:57 921
10 0:33 8,296 0:58 921

Avg. 0:33 0:59

Table 1: 10-fold cross-validation performance comparison
between Strand and RDP.

a good classifier, these sequences will contain more varia-
tion. To analyze the impact of data set size, we hold 25,000
sequences back for testing and then use incrementally in-
creased training set sizes from 25,000 to 125,000 in incre-
ments of 25,000 sequences. For Strand we use a word size of
60 and a sequence signature length of 100.

Figure 4 shows the classification accuracy of Strand and
RDP using an increasingly larger training set. Strand has
slightly higher accuracy. Accuracy increases for both clas-
sifiers with training set size. However, it is interesting that
after 100,000 sequences, the accuracy starts to drop with a
significantly steeper drop for RDP.

Figure 5 compares the time needed to train the classifiers
with increasing training set size. During training, Strand
execution times consistently outperform RDP with training
time deltas further widening as input training volumes in-
crease. In Figure 5 RDP training times increase rapidly
as the training set size increases. Strand training times
increase at a rate closer to linear. When training against
125,000 Greengenes sequences, Strand completes training in
5:39 (mm:ss) while RDP takes 16:50 (mm:ss). The classifi-
cation time does not vary much with the training set size.
Strand’s average classification time for the 25,000 sequences
is 1:41 (mm:ss) while the average time for RDP is 20:15
(mm:ss).

Finally, we look at memory requirements for Strand. Since
we use a word size of 60 bases, there exist 460 ≈ 1036 unique
words. For RDP’s word size of 8 there are only 48 = 65536
unique words. Strand deals with the huge amount of pos-
sible words using minhashing and adding only a small sig-
nature for each sequence to the class signature. This means
that the Strand data structure will continue to grow as the

Fold Kingdom Phylum Class Order Family Genus Overall
Strand Accuracy Results

1 100% 100% 99.9% 99.5% 99.0% 94.5% 98.8%
2 100% 100% 100% 100% 99.4% 95.2% 99.1%
3 100% 100% 99.8% 99.4% 98.3% 93.7% 98.5%
4 100% 100% 99.6% 99.3% 97.9% 93.1% 98.3%
5 99.9% 99.9% 99.9% 99.8% 99.4% 94.4% 98.9%
6 100% 100% 99.8% 99.5% 98.5% 93.7% 98.6%
7 100% 100% 100% 99.6% 99.2% 93.7% 98.8%
8 100% 100% 100% 99.9% 98.2% 92.5% 98.5%
9 100% 100% 100% 100% 99.4% 93.1% 98.8%
10 100% 100% 99.9% 99.8% 98.8% 93.3% 98.7%

Avg. 100% 100% 99.9% 99.7% 98.8% 93.7% 98.7%
RDP Accuracy Results

1 100% 100% 100% 99.5% 98.6% 95.1% 98.9%
2 100% 100% 100% 99.8% 98.8% 94.0% 98.8%
3 100% 99.9% 99.8% 98.9% 97.6% 93.3% 98.3%
4 100% 100% 99.8% 99.5% 99.1% 93.2% 98.6%
5 100% 100% 100% 99.9% 99.5% 94.4% 99.0%
6 100% 100% 99.9% 99.5% 98.2% 92.3% 98.3%
7 100% 100% 100% 99.5% 99.2% 93.9% 98.8%
8 100% 100% 100% 99.5% 98.2% 91.5% 98.2%
9 100% 99.6% 99.6% 99.6% 99.0% 93.9% 98.6%
10 100% 100% 99.8% 99.5% 98.6% 92.3% 98.4%

Avg. 100% 100% 99.9% 99.5% 98.7% 93.4% 98.6%

Table 2: 10-fold cross-validation accuracy comparison be-
tween Strand and RDP.

volume of training data increases. The overall space con-
sumption characteristics of Strand are directly related to
the selected word size, the minhash signature length, and
the amount of sequences learned. Figure 6 shows the per-
centage of unique signature entries (minhash values) stored
relative to the number of words processed. With increasing
training set size the fraction of retained entries falls from 2%
at 25,000 sequences to just above 1% at 125,000 sequences.
This characteristic is attributed to the fact that many se-
quences share words. In total, Strand stores for 125,000
sequences 1.7 million entries which is more than the 65,536
entries stored by RDP, but easily fits in less than 1 GB
of main memory which is typically in most modern smart
phones.

6. CONCLUSION
In this paper we have introduced a novel word-based se-

quence classification scheme that utilizes large word sizes.
A highly parallel MapReduce style pipeline is used to simul-
taneously map gene sequence input data into words, map
words into word hashes, reduce all word hashes within a
single sequence into a minimum hash signature, and then
populates a data structure with category minhash signatures
which can be used for rapid classification.

Experiments show that for 16S rRNA a word size of 60
bases and a sequence minhash signature length of 300 pro-
duce the best classification accuracy. Compared to RDP,
Strand provides comparable accuracy while performing clas-
sification 20 times as fast.

Acknowledgements

The systems and methods described in this publica-

97.20%

97.40%

97.60%

97.80%

98.00%

98.20%

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

25,000 50,000 75,000 100,000 125,000

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Sequences Learned

RDP Strand

Figure 4: Strand and RDP accuracy on Greengenes data.

0

200

400

600

800

1,000

1,200

25,000 50,000 75,000 100,000 125,000

Tr
ai

n
in

g
Ti

m
e

 in
 S

ec
o

n
d

s

Sequences Learned

RDP Strand

Figure 5: Strand and RDP running time on Greengenes
data.

tion are protected by the following US patent appli-
cations:

1. Jake Drew. 2014. Collaborative Analytics Map Re-
duction Classification Learning Systems and Methods.
(Feb. 2013). Patent Application No. 14/169,689,
Filed February 6th., 2013.

2. Jake Drew, Michael Hahsler, Tyler Moore. 2014. Sys-
tem and Method for Machine Learning and Classi-
fying Data. (May 2013). Patent Application No.
14/283,031, Filed May 20th., 2013.

7. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and

D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215(3):403–410, 1990.

[2] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

25,000 50,000 75,000 100,000 125,000

M
in

h
as

h
 P

ro
d

u
ce

d
 a

s
a

%
 o

f
W

o
rd

s
P

ro
ce

ss
ed

Sequences Learned

631K

31.8M
M

58.0M

907K

1.1M

88.3M
118.4M

1.4M

Words Processed

Minhashes Stored

1.7M

149.7M

Figure 6: Percentage of retained entries in the Strand data
structure.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages
327–336. ACM, 1998.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks and ISDN Systems, 29(8):1157–1166, 1997.

[5] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing. Bioinformatics,
17(5):419–428, 2001.

[6] C.-Y. Chiu, H.-M. Wang, and C.-S. Chen. Fast
min-hashing indexing and robust spatio-temporal
matching for detecting video copies. ACM
Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP),
6(2):10, 2010.

[7] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R.
Bradski, A. Y. Ng, and K. Olukotun. Map-Reduce for
Machine Learning on Multicore. In B. Schölkopf, J. C.
Platt, and T. Hoffman, editors, NIPS, pages 281–288.
MIT Press, 2006.

[8] O. Chum, M. Perdoch, and J. Matas. Geometric
min-hashing: Finding a (thick) needle in a haystack.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 17–24.
IEEE, 2009.

[9] J. Dean and S. Ghemawat. Mapreduce: A flexible
data processing tool. Communications of the ACM,
53(1):72–77, 2010.

[10] J. Drew. Mapreduce: Map reduction strategies using
C#, 2013.

[11] R. C. Edgar. Search and clustering orders of
magnitude faster than BLAST. Bioinformatics
(Oxford, England), 26(19):2460–1, 2010.

[12] D. Keco and A. Subasi. Parallelization of genetic
algorithms using hadoop map/reduce. SouthEast
Europe Journal of Soft Computing, 1(2), 2012.

[13] L. Li, D. Wang, T. Li, D. Knox, and

B. Padmanabhan. Scene: A scalable two-stage
personalized news recommendation system. In ACM
Conference on Information Retrieval (SIGIR), 2011.

[14] G. Marçais and C. Kingsford. A fast, lock-free
approach for efficient parallel counting of occurrences
of k-mers. Bioinformatics, 27(6):764–770, 2011.

[15] A. McKenna, M. Hanna, E. Banks, A. Sivachenko,
K. Cibulskis, A. Kernytsky, K. Garimella,
D. Altshuler, S. Gabriel, M. Daly, et al. The genome
analysis toolkit: A mapreduce framework for
analyzing next-generation dna sequencing data.
Genome research, 20(9):1297–1303, 2010.

[16] S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, 1970.

[17] A. Rajaraman and J. Ullman. Mining of Massive
Datasets. Mining of Massive Datasets. Cambridge
University Press, 2012.

[18] C. E. Shannon. A mathematical theory of
communication. The Bell Systems Technical Journal,
27:379–423, 1948.

[19] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, March 1981.

[20] E. Ukkonen. Approximate string-matching with
q-grams and maximal matches. Theoretical Computer
Science, 92(205):191–211, 1992.

[21] S. Vinga and J. Almeida. Alignment-free sequence
comparison — A review. Bioinformatics,
19(4):513–523, 2003.

[22] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole.
Naive bayesian classifier for rapid assignment of RNA
sequences into the new bacterial taxonomy. Applied
and Environmental Microbiology, 73(16):5261–5267,
2007.

	Introduction
	Background
	Word Extraction
	Minhashing
	MapReduce Style Processing

	Learning Category Signatures
	Mapping Sequences into Words
	Creating Sequence Minhash Signatures
	Reducing Sequence Minhash Signatures into Category Signatures

	Classification Process
	Results
	Choosing Word Size and Signature Length
	Comparison of Strand and RDP on the RDP Training Data
	Comparison of Strand and RDP on the Greengenes Data

	Conclusion
	References

