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ABSTRACT

Identification of organisms using their genetic sequences is
a popular problem in molecular biology and is used in fields
such as metagenomics, molecular phylogenetics and DNA
Barcoding. These applications depend on searching large
sequence databases for individual matching sequences (e.g.,
with BLAST) and comparing sequences using multiple se-
quence alignment (e.g., via Clustal), both of which are com-

putationally expensive and require extensive server resources.

We propose a novel method for sequence comparison, anal-
ysis, and classification which avoids the need to align se-
quences at the base level or search a database for similar-
ity. Instead, our method uses alignment-free methods to
find probabilistic quasi-alignments for longer (typically 100
base pairs) segments. Clustering is then used to create com-
pact models that can be used to analyze a set of sequences
and to score and classify unknown sequences against these
models. In this paper we expand prior work in two ways.
We show how quasi-alignments can be expanded into larger
quasi-aligned sections and we develop a method to clas-
sify short sequence fragments. The latter is especially use-
ful when working with Next-Generation Sequencing (NGS)
techniques that generate output in the form of relatively
short reads. We have conducted extensive experiments us-
ing fragments from bacterial 16S rRNA sequences obtained
from the Greengenes project and our results show that the
new quasi-alignment based approach can provide excellent
results as well as overcome some of the restrictions of by the
widely used Ribosomal Database Project (RDP) classifier.
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1. INTRODUCTION

Living beings show a wide variety and diversity of form.
It is estimated that there are between 10-15 million species
of life on earth [6, 9]. Identifying organisms and classifying
them into the proper taxonomic hierarchy is a phenomenal
problem and something that is impossible to be done man-
ually through morphological methods [8] alone.

An alternative method, especially for bacterial species,
is using genetic sequences to ascertain the identity of the
organisms. This approach has received much attention in
recent years due to the increasing availability of low cost
sequencing facilities. In a traditional laboratory setting, en-
tire genome of a single organism can be easily isolated and
sequenced. Similarly, specific regions of the genomes and
particular genes can be isolated and sequenced easily. Using
these methods, it is feasible to create a genetic fingerprint of
each species or related group of organisms. Various specific
regions of the sequences, also known as genetic markers, are
used for this purpose.

To analyze specific regions or entire genomes, it becomes
necessary to use sequence similarity methods. A large set
of sequences can be simultaneously compared using Multi-
ple Sequence Alignment which is known to be NP-complete
[22]. To make this type of analysis feasible, heuristics like
progressive alignment (e.g., Clustal [17]) have been devel-
oped. Another tool for similarity search against a database
of sequences is BLAST [15], which outputs shorter regions
of high similarity between a query sequence and matched
sequences in the database. However, all these methods are
still computationally very expensive and require significant
computational infrastructure.

Alignment-free methods [21] typically use word frequen-
cies to represent a sequence, where words are subsequences
of a fixed length. By comparing word frequency profiles
rather than using multiple sequence alignment the computa-
tional complexity is greatly reduced. However, these meth-
ods consider sequences as “bags of words” and useful infor-
mation such as location of words and their position-specific
distribution is ignored.

In this paper we build on previous work on quasi-alignment
[10, 13], which applies computationally very efficient position-
sensitive word frequency analysis and data stream clustering
to create compact and lightweight profiles of related genetic
sequences and defines scoring functions to calculate the sim-



ilarity between sequences and profiles. The original method
used the entire 16S rRNA sequence for finding similar re-
gions and taxonomic classification. This approach assumed
that the sequences had similar lengths and well-defined start
and end points. In this paper, we extend the technique to
the more general and also more difficult case of classifying
sequence fragments of lengths commonly created by current
Next-Generation Sequencing (NGS) technologies (between
200-500 bases).

The rest of the paper is organized as follows: in the next
section we present a review of the Quasi-Alignment (QA)
method and show how it can be used for two or more se-
quences. In Section 3, the extension of QA to shorter frag-
ments of sequences is presented which will form the basis of
the experiments described in section 4 of the paper. We com-
pare our approach with the leading classifier and show how
our method can classify even missing or incomplete data.
We describe two sets of experiments in details and present
a summary of the results. In Section 5, we present ideas for
future work.

2. QUASI-ALIGNMENT

Quasi-alignment (QA) was first introduced in [10] and we
will present a brief and updated overview here. QA uses
the alignment-free method of word frequencies. First, we
formally define word inside a biological DNA sequence and
the corresponding word frequency.

Definition 1. A word w of length p is a string of p consec-
utive letters in a sequence S. It is also referred to as p-mer.
The word frequency of w in S is the occurrence count f,
of w in the sequence.

Alignment-free methods such as word frequency distribu-
tions are an efficient alternative to traditional sequence align-
ment and can give an approximate idea of sequence similar-
ity [21]. However, several research studies have shown that
the nucleotide content varies across different areas of a se-
quence. For example, it is well known that certain regions
have a high fraction of G and C bases and are known as
GC-rich areas [12, 18]. Similarly, many other studies have
shown that certain words are over-represented in specific re-
gions of sequences [7]. Quasi-alignment divides the sequence
into equal sized segments (by default of 100 bp) and can take
into account the position dependent variation in word con-
tent and frequency. We define a segment inside a sequence
as follows:

Definition 2. Given a sequences S of length L, a sequence
segment S;; is defined as a sub-sequence starting at posi-
tion ¢ and having length | where [ < L —¢ — 1. The starting
position i is also referred to as the offset of the sequence
segment.

Segments are individually analyzed for word frequency
distribution. In this analysis, we restrict ourselves to the
alphabet consisting of the 4 nucleotide bases {A,C,T,G}.
We refer to the word frequency distribution inside a seg-
ment a Numerical Summarization Vectors (NSV), which is
defined below.

Definition 3. Given a sequence segment S;; and a fixed

word size p, the Numerical Summarization Vector (NSV)

for this segments is defined as NSV;; = {f1, f2,..., far}

where each element f; represents the count of one of the
j = 1,2,...,47 possible words in segment S;;. The order
of the 47 words in the vector is arbitrary but needs to stay
consistent over all NSVs.

For example, if we count words of length 3, then there will
be a total of 4% or 64 elements in the NSV vectors. Figure 1
depicts the process of creating segments and NSVs. For ex-
ample, the segment S1,10 in Figure 1 refers to the segment
starting at position 1 and having length 10. The second
step converts the segments into word frequency vectors by
counting all possible contiguous words in each segment and
creating a table of word frequencies. The process is straight-
forward and similar to ones used in various fields such as text
analysis, networking, and other bioinformatics applications.

|CAACATGAGAGGCTCAACGACGGAGGGCTAAC GTGTTCAT

S110 Si1,10 S21.10 S3110

CAACATGAGAJGGCTCAACGA |CGGAGGGCTA JACGTGTTCAT |

1 41 1 1

NSV110 NSVit,i0 NSVa110 NSV31,10

Figure 1: Process of creating Numerical Summariza-
tion Vectors (NSVs) from sequence segments

2.1 Pair-wise Quasi-Alignment of Segments

Segments from two different sequences can be compared
using their edit distance [11], which is related to alignment
and is computed using dynamic programming. In the area
of approximate string matching, Ukkonen proposed to ap-
proximate the expensive computation of the edit distance
between two strings by using ¢-grams (analog to words in
sequences)[19]. First, g-gram profiles (which in our case are
NSVs) are created and then the distance between the pro-
files is calculated using Manhattan distance. The Manhat-
tan distance between two NSVs, x and y, is defined as:

4P

D Ja — il (1)

=1

dManhattan (xv ZJ) =

Manhattan distance also has a particularly straightfor-
ward interpretation for NSVs. The distance counts the num-
ber of words by which two sequences differ which gives the
following lower bound on the edit distance between the orig-
inal sequences S; and Sy:

dManhattan (w7 y) S 2p dEdit (517 Sy) (2)

This relationship is easy to prove since each insertion,
deletion or substitution in a sequences destroys at most p
words and introduces at most p new words. Although, we
can construct two completely different sequences with ex-
actly the same NSVs (see [19] for a method to create such
strings), we are typically interested in sequences of high sim-
ilarity in which case duanhattan (%, y)/(2p) gets closer to the
edit distance.

This relationship can be used to determine a reasonable
cut-off at which we determine that two segments are similar



enough to consider them to be potentially aligned, i.e., quasi-
aligned. For example, we often use a segment size of 100
bases with words of size 3. If we want to quasi-align all
segments where less than 5 bases differ, then Equation 2
gives us a threshold of 30.

Definition 4. Two segments S, and Sy represented by the
NSVs z and y are quasi-aligned (QA) if, and only if,
dManhattan (2, y) < 2pd, where p is the word length used to
create the NSVs and § is the alignment threshold defined
as the maximum edit distance allowed in two quasi-aligned
segments.

An example is shown in Figure 2. Segments across differ-
ent sequences having NSV distance less than the threshold
value are joined together by arrows.

Segment 3 ‘ Segment 4 | Sequence 1

v

\Egment 1 | Segment 2

Sequence 2

Figure 2: Two quasi-aligned segment pairs for two
sequences.

A drawback of the described approach is that the se-
quences involved need to be split in the same position to
make segments comparable. This is not a realistic assump-
tion if we work with fragments and we will remove this re-
striction later in this paper.

2.2 Multiple Sequence Quasi-Alignment

Comparing all combinations of segments between several
(potentially thousands) of sequences becomes quickly com-
putationally expensive. However, we can use clustering to
find sets of similar NSVs. Figure 3 shows the clustering pro-
cess for sequence segments. The blue segments show similar
frequency distribution and are clustered together in Cluster
1. Similarly, green segments have similar frequency distri-
bution and are part of Cluster 2.

_ Segment 2 \ Segment 3 | Segment 4 | Sequence 1
_ Segment 2 \ Segment 3 | Segment 4 | Sequence 2

[Segmenti| Segment2 | Segment3 | Segment4 | >equences

Clustering

Cluster 1

( = Cluster 2
Figure 3: Clustering segments with similar word fre-
quency distributions.

Although any clustering algorithm based on the distances
between NSVs (see definition above) could be used, we sug-

gest using high efficiency data stream clustering [2]. These
algorithms are designed to cluster very large data sets using
a single pass over the data and have only minimal memory
overhead. The clustering algorithm used for this study is
described in the open source R package QuasiAlign[14] and
can be used for other Bioinformatics applications as well.

2.3 Expanding Quasi-alignments

| Segment 1 ‘ Segment 2 | Segment 3 | Segment 4 ‘ Sequence 1

| Segment 1 ‘ Segmhth | Seément3 | Segment 4 ‘ Sequence 2

Figure 4: Expanding segment quasi-alignments to
larger quasi-aligned areas.

Clusters represent similar segments across multiple se-
quences and provide useful local (quasi) alignment infor-
mation. However, alignment might exist for subsequences
larger than single segments. For example, Figure 4 shows
two sequences, where two consecutive segments in Sequence 1
quasi-align with two consecutive segments in Sequence 2. In
this case, the whole area of two segments should be consid-
ered a larger quasi-alignment. For pair-wise quasi-alignment
this is trivial, however, for multiple sequence quasi-alignment
this is more complicated. Our proposed solution is to record
the order of segments in sequences while clustering. This is
shown in the example in Figure 4 where after seeing contigu-
ous segments clustered in clusters 1 and 2, an association
relation between the clusters is marked by a directed arrow
joining them. We record such order information for all quasi-
aligned sequences with k clusters by counting how often one
segment assigned to cluster j follows a segment in cluster 4
in matrix C = [¢i;]kxk. Note, that by scaling the count ma-
trix by dividing each row by the row sum will give estimates
for the conditional probabilities to see a segment grouped in
cluster ¢ being followed by one in cluster j. The scaled count
matrix A = [ai]’]kxk can be seen as a transition matrix of a
discrete-time Markov Chain [16] with the clusters as states.
This is important since Markov Chains are a theoretically
very well understood mathematical model for which many
properties and guarantees have been established.

We refer to a clustering and the associated count matrix
as a genetic model or GenModel for short. This model stores
in a very compact way (quasi) alignment information for sets
of sequences which is similar to multiple sequence alignment.
However, segments are clustered into a set of clusters which
is typically much smaller than the number of segments and
the order information is aggregated at the cluster level. This
means that these models are very space efficient.



2.4 Scoring New Sequences against Models

In the previous section, we have introduced how to use
the idea of quasi-alignment to create cluster models called
GenModels which represent sets of quasi-aligned sequence
segments as well as aggregated order information. For many
applications it is important to evaluate if a new, unidentified
sequence is similar i.e., aligns well with a set of known se-
quences. After converting the known sequences to GenMod-
els, a new sequence can be scored against them as follows:

1. Find for each segment in the new sequence the best
quasi-alignment in the GenModel. This is done by
finding for each segment s; the closest cluster in the

model using the distance metric used to build the model.

We record the distance for each segment.

2. Evaluate if the segment-wise quasi-alignment can be
expanded. For each set of consecutive segments s; and
St+1, the strength of the transition in the model be-
tween states S; and Si4+1 is recorded.

3. The distances and transition strengths are aggregated
into a single score.

There are many different ways the aggregated score can
be calculated and we will only present two here. A full
set of scoring methods is implemented and described the
package QuasiAlign. A straight forward score for scoring
sequences against Markov Chains is the product of transition
probabilities along the new sequence. This scores for a new
sequence with [ segments is defined as:

S -1
product —

-1
[Taw.s6em ()
i=1

where (i) is the cluster the i*" segment in the new sequence
is assigned to, and a;; are elements of the model’s transition
matrix A.

Another, much simpler score can be obtained by just count-
ing the number of transitions in the new sequence which are
also present (supported) in the model.

-1

1
Ssupported,transitions = ﬁ Z I(as(i),s(i+1)) (4)

i=1

where I(v) is indicator function which is 0 for v = 0 and 1
otherwise.

As a concrete example, Figure 5 shows a sequence on the
left and a model on the right. The transition matrix is visu-
alized as a the arrows labeled with the transition probability
in the graph. The closest clusters corresponding to each seg-
ment is shown by the blue arrows. For this case,

Sproduct = v 1.00 * 0.20 % 0.40 = 0.431

and

1+1+1)=1

W =

Ssupported,transitions =

For classification, we build a set of GenModels
M ={mi,ma,...,my}
for the phylogenetic level p and having class labels

P = {plap27' . ,pn}

Segment 1 ‘Segment2 ‘Segmem3 Segment 4

Figure 5: Scoring a new sequence against an existing
model.

Figure 6: Two sequences with similar regions where
quasi-alignment fails due to different offsets.

Then a test sequence Stest is scored against all models in M
creating similarity scores {simi, sima, ..., simy}. We then
assign the test sequence to class p, where k is the index of
the highest similarity score, i.e.,

simy = max(simai, sima, . .., SiMy,) (5)

3. QUASI-ALIGNMENT FOR FRAGMENTS

All previous research on quasi-alignment has focused on
complete 16S rRNA sequences where creating consistent seg-
ments is easy since these sequences have a well defined start-
ing and ending points. This means that cutting different
sequences at the same offset will ensure that the segments
cover the same area and are comparable. However, such an
approach will not work well with random sequence fragments
(such as those encountered in Next Generation Sequencing
data) as they can have variable starting and ending points.
Consider the example in Figure 6. The colored regions in-
dicate aligned areas, but since the segments in the second
sequence start at different offsets, quasi-alignment cannot
find them.

To remedy this shortcoming we suggest to learn a model
by considering each possible offset in the sequence. This will
allow us to capture all possible segments of the given length
irrespective of their position. As an example, consider a
sequence of length 20 nucleotides that has been divided into
4 segments of size 5 each. This is shown in Figure 7. The first
pass through the sequence is identical to before. We start
at offset 0 and create models using the segments {ACTGG,
CACTG, GTAAA, CGCGT}. In the enhanced algorithm,
we make 4 more passes by creating segments at offset 1, 2,
3 and 4. The second pass through the sequence with offset
1 creates segments {CTGGC, ACTGG, TAAAC, GCGT}
and so on.
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Figure 7: Segment creation for quasi-alignment of fragments.

Table 1: List of phylums used in experiments

Phylum Counts
Thermotogae 445
Synergistetes 421

SAR406 336
Fibrobacteres 169

Deferribacteres 168
Chlorobi 408
Chlamydiae 216
Armatimonadetes 136

Effectively, a sequence of length L is treated as L — [+ 1
different sequences of length [ each with different starting
points. Each sequence has one base striped off from the
start and a new base appended at the end. This way we
learn all possible segment cutting points and no matter at
what position a fragment starts there will be a cluster in the
GenModel that learned from sequences at the same position.
Note, that this approach increases the time needed to create
models by the constant factor of L. The size of the model
will increase only be a much smaller degree, since many new
segments will readily cluster into already existing clusters.
Also, in order to score a new sequence, it only needs to be
cut into segments using a single offset and not all L possible
ones. Therefore, the additional computational burden only
effects model creation which is not done often and can be
executed as a batch job using more computational power.

4. EXPERIMENTS

For the experiments we use bacterial DNA sequences from
the 16S rRNA gene, which are widely used for phyloge-
netic studies because it has remained relatively conserved
over time [23]. The sequence data along with the com-
plete phylogenetic hierarchy is available from the Green-
genes [1] project. We used the unaligned format of the data
which is available from the Greengenes website at http:
//greengenes.1lbl.gov.

The sequences were parsed and efficiently loaded into SQLite

databases using the R package BioTools. After that, we
randomly selected sequences from 8 medium sized phylums
having between 100-500 sequences. The list of phylums and
their sequence counts is shown in Table 1. The same anal-
ysis can be done for any sized phylums, with larger ones
requiring more processing time.

The sequences were then split up in the ratio 90/10 for
training and test within each rank. For example, for the
phylum “Synergistetes” having 421 total sequences, 90% or

Entomoplasmataceae ‘ ‘Mycoplasmataceae

Family

83 631
Genus

Mycoplasma

Figure 8: RDP classifier is not able to handle mul-
tiple inheritance within the taxonomic hierarchy.

379 were used for model creation and the remaining 10% or
42 were used for testing. Since we are interested in classi-
fying fragments and not the entire sequences, we randomly
extracted a fragment of fixed size (400 bp) and used it for
classification against the trained models.

4.1 Validation of Results

To validate our approach, we compared the class label
prediction from Quasi-Alignment (QA) to the actual phy-
logenetic class label which is available in the Greengenes
database. We also compared our performance against the
RDP classifier, which is a popular tool in molecular biology
and has been widely used for taxonomic identification and
classification [3, 20]. It takes a Naive Bayesian approach to
classification by considering a feature space consisting of all
words of length 8 in rRNA sequences. We used the inter-
face to RDP available in the BioTools package [5] and it can
be used to create a custom trained RDP classifier using the
same set of sequences that were used for training the QA
classifier.

4.1.1 Problems training the RDP Classifier

Although widely used, we discovered some problems when
training the RDP classifier using data from Greengenes.
First is the issue with a lower rank belonging to more than
one upper rank, which we refer to as the multiple inheritance
problem. RDP classifier can not handle this as it requires
an exact hierarchical tree to be constructed as detailed in
the instructions of RDP classifier download page at : http:
//sourceforge.net/projects/rdp-classifier/files. As
an example, the genus Mycoplasma can belong to two fam-
ilies Entomoplasmataceae and Mycoplasmataceae with 83
and 631 sequences in each respectively. This is illustrated
in Figure 8. RDP classification tree can not be constructed
in such cases and manual pre-processing is required to clean
the data and remove the sequences that have lower count at
the family level. QA classifier can handle such a situation
and is able to classify sequences with incomplete or missing
taxonomic data and still achieve excellent prediction accu-
racy.



Table 2: Parameters used for the experiments

Parameter Value
Segment Length 100
Clustering Threshold 30
Word Size 3
Test Fragment Size 400
Scoring Method Supported Transitions

It has been estimated that almost 43% of sequences in
the Greengenes database are not completely classified [4].
In such a scenario, the requirement of having a perfect hi-
erarchy clearly laid out for the training data set is too re-
stricting. We believe that our classifier does away with this
limitation and can be used on a less perfect but much larger
data set.

Another possible limitation of the RDP classifier is that it
works best at the genus level (as mentioned in the README
file of the classifier). Although the tree can be constructed
down to the species level, it would require lot of pre-processing
effort in cleaning up the data since a large percentage of
species are unclassified.

4.2 Phylum Level Classification Results

For the first set of experiments, we used the 8 phylums
listed in Table 1 and randomly split each phylum into train-
ing and test data using a ratio of 90/10. The models were
constructed from the training dataset using the default val-
ues of all parameters as shown in Figure 2 and random frag-
ments of fixed length from each test sequence were scored
against each of the models to find the similarity score.

In the first set of experiments, we constructed models at
the phylum level. We compared our results with those from
the RDP classifier and also the actual classification obtained
from the Greengenes database. The parameters used for cre-
ating the models are specified in Table 2. We chose random
fragments from the test sequences and classified them using
the QA and RDP classifiers. The RDP classifier was trained
at the genus rank as suggested in the documentation.

The results are presented in Table 3 below. Some points
need to be clarified here:

1. For the RDP classifier to work, a depth parameter has
to be specified which refers to the depth of the hi-
erarchy tree. By default, a tree is constructed upto
the genus level as suggested in the documentation.
In many cases, sequences have incomplete hierarchy
and a tree can not be constructed. For example, phy-
lum SAR/06 contains several sequences that have been
classified only upto the order level and not below. In
such cases, it is not possible to construct the complete
hierarchy tree.

2. The somewhat lower performance of RDP can be due
to the fact that sequences with any taxonomic rank
missing upto the genus level have been removed. We
could have constructed a partial taxonomic tree for

each case, but that would require extensive pre-processing

and cleaning of training data set every time. The point
to be noted from this analysis is that QA can perform
much better when there is uncertainty in the data.

3. We tried to filter out those sequences that had in-
complete or ambiguous hierarchy as much as possible.

However, this is not feasible in cases of real world se-
quences. Sometimes, a researcher might be interested
in getting an idea of the taxonomic hierarchy even if
partial information is available.

4. QA requires no pre-processing of data either due to
incomplete hierarchy or because of the multiple inher-
itance problem. It can be used locally and can also
store vital meta information about the models [13].

Results in Table 3 show that at the phylum level QA is
able to outperform RDP and also does not require any pre-
processing or cleaning of the sequence data. It can be run
locally and does not require extensive server resources.

4.3 Species Level Classification Results

In the second round, we conducted experiments for identi-
fication of species from sequences. Previous work and classi-
fiers such as RDP have focused mostly on genus level classi-
fication and does not provide an easy way to identify species
from their sequence data. This can be due to the fact that
it is hard to differentiate sequences from same or closely re-
lated genera. QA has a flexible approach to classification
and can be tuned to classify at a finer level and differentiate
species sequences.

We selected 10 random species from the Greengenes database

that contained between 100-500 sequences and carried out
testing on them using a training/test ratio of 90/10. We
used the default values of the parameters in this case which
are specified in Table 2.

The list of species along with their counts are in the first
two columns of Table 4. The number of sequences used for
testing are shown in the third column. In case of species
classification, there were many ties in the similarity scores
between the test sequences and the GenModels. This is ex-
pected as some species such as Bacillus amyloliquefaciens
and Bacillus anthracis are closely related and belong to the
same genus Bacillus. In cases of tied winners, we consider
the sequence as correctly classified. This is reflected in the
fourth column of the table. The last three columns give more
information on ties and how many species are tied. It can be
seen that in more than 30% of the cases we have been able
to identify the clear winner and in more than 58% of the
cases the correct classification was one of three tied species.
Overall, in 99.56% of the cases a clear or tied winner was the
correct classification. Therefore, this classification algorithm
can serve as a good starting point for further analysis since
more computationally expensive methods (e.g., multiple se-
quence alignment) can be limited to just a few potential
species rather than the entire database.

S. DISCUSSION AND FUTURE WORK

We have presented a simple yet powerful technique for
fragment identification and classification using the Quasi-
Alignment approach. This method avoids the computation-
ally expensive alignment process and is able to take a higher
level view of sequences by looking at the word frequency dis-
tribution inside fixed length segments.

We carried out extensive experiments using open source
packages and very modest computing infrastructure. An-
other useful feature of QA is that it can use incomplete or
missing taxonomy information to construct models and clas-
sify unknown sequences in a fuzzy way. This is an improve-
ment over existing classifiers such as RDP that require the



Table 3: Sequences used in Phylum Level Experiments and Comparison between QA and RDP

Species Counts | Used for testing | QA Correct | QA % Correct | RDP Correct | RDP % Correct
Thermotogae 445 45 45 100% 45 100%
Synergistetes 421 43 42 97.67% 43 100%

SAR406 336 34 34 100% 28 82.35%
Fibrobacteres 169 17 17 100% 12 70.59%

Deferribacteres 168 17 17 100% 17 100%
Chlorobi 408 41 40 97.56% 34 82.93%
Chlamydiae 216 22 22 100% 22 100%
Armatimonadetes 136 14 13 92.86% 8 57.14%
Total 2299 233 230 98.71% 209 89.70%
Table 4: Sequences used in experiments for species classification
Species Counts | Test Total | Correct | % Correct | %1 Winner | %2 Winners | %3 Winners
Eubacterium biforme 494 50 50 100% 4% 30% 44%
Neisseria meningitidis 484 49 49 100% 95.92% 4.08% 0%
Clostridium perfringens 480 48 48 100% 0% 6.25% 33.33%

Bacillus anthracis 475 48 48 100% 0% 0% 0%
Collinsella aerofaciens 449 45 45 100% 80% 17.78% 0%

Lactococcus lactis 434 44 44 100% 0% 11.36% 40.91%

Dialister invisus 427 43 42 97.67% 0% 11.63% 27.91%
Bacteroides plebeius 426 43 43 100% 100% 0% 0%
Ruminococcus gnavus 401 41 40 97.56% 24.39% 14.63% 21.95%

Bacillus amyloliquefaciens 397 40 40 100% 0% 2.50% 10%
Total 4467 451 449 99.56% 30.60% 9.98% 17.96%

taxonomy of all training sequences to be defined completely
upto the desired classification level.

The performance of QA is excellent and can achieve high
classification accuracy at all levels, from phylum down to
the species level. In the experiments that we performed,
our methods were able to correctly classify over 90% of the
sequences in all cases using a ratio of 90/10 for training and
test sequences. A higher training ratio further improves our
performance.

In this paper, we have presented a preliminary analysis of
using QA for fragment identification and classification. Our
results have been very encouraging and we plan to develop a
complete framework for identifying unknown sequences us-
ing the existing taxonomic knowledge from the Greengenes
and other related sources. We also plan to build a web in-
terface so that a wider audience can access this work.
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