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1. Data streams and data stream clustering 

 

2. SOStream algorithm 

• Determine the clustering threshold 

• Online merging 

• Competitive-learning 

 

3. Experiments 

• Synthetic data 

• Real-world data set 

• Sensitivity to parameters 

• Scalability and complexity 

 

4. Conclusions 



SOStream: Self Organizing Density-

Based Clustering Over Data Stream 

Data Streams 

Data stream 

• Unbounded sequence of data points 

• Single pass restriction 

• Data stream may be evolving over time 

 

Applications 

• Data streams:  

• Earth sciences (satellite data)  

• High energy physics (Large Hadron Collider), … 

• Large sequence data:  

• Bioinformatics (genetics sequences), … 

 



SOStream: Self Organizing Density-

Based Clustering Over Data Stream 

Data stream clustering 

Typical approach: 

1. Online: Use micro-clusters (store cluster features or synopses: center, 

variance, weight)  

2. Offline: Re-cluster micro-clusters into final clusters on demand. 

 

 Distance-based   Density-based 
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SOStream 

1. How do we choose the threshold/radius or the grid size? 

2. Can we merge micro-clusters online? 

3. How do we deal with overlapping (real) clusters? 

 

SOStream uses the distance based approach. 

1. Learn individual threshold for each micro-cluster using the density-

based idea of the k-nearest neighbor distance (DBSCAN). 

2. Use the radius for merging micro-clusters online. 

3. Employ ideas from competitive learning (Self Organizing Maps). 
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Example of learning the radius and competitive learning 
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Updating clusters centroid to resemble the winning cluster 

Motivated by Kohonen’s SOMs [1],  we propose that the centroid Ci of 

each cluster Ci  that is within the neighborhood of the winning cluster Cwin 

is modified to resemble the winner: 

Where α is a scaling factor and β is a weight which represents the amount 

of influence of the winner on a cluster. We define  β  as:  
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rwin denotes the radius of the winner. The definition of β ensures that  

0 < β ≤ 1. This approach is used to aid in merging similar cluster and 

increasing separation between different clusters. 
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Online merging 

Merging is performed online at each time step only considering the 

neighborhood of the winning cluster. 

 

Clusters may change their original position over time and may result in 

overlap with other clusters. Ci and Cj overlap if 
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Online merging (cont.) 

We compute the new cluster’s radius ry : 
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where Cy is the new cluster centroid. 

The new cluster Cy is created by finding the weight wi and wj of each 

cluster. This is achieved by:   
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where ai and bi are the ith dimension of the weighted centroids. 
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Evolving data stream 

Fading of cluster structure is used to discount the influence of old data 

points. SOStream uses exponential decay : 
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where, λ define the rate of decay of the weight over time and t = (tc – t0), tc 

denote the current time and t0 is the creation time of the cluster. 

 

 

The frequency count n determines the weight of each cluster. Aging is 

accomplished by reducing the count over time. Any cluster that reach a 

defined minimum weight can be removed:  
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Experiments 

Synthetic data 

• Java based dataset generator described in [2].  

• 3000 data points (no added noise).  

• 5 convex-shaped clusters that overlap.  

 

Real-world dataset 

• KDD CUP’99 dataset [3].  

• Realistic network attacks in a Air Force base network.  

• 494,000 labeled records with 34 continuous attributes 
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Synthetic data 

(a) Data points of stream with 5 overlapping clusters and  

(b) show SOStream capability to distinguish overlapped cluster  

 (α = 0.1 and MinPts = 2). No Fading or Merging where utilized   
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Real-world dataset clustering quality 

Where:  

K = The number of real clusters 

           = The number of points that dominate the  

          cluster label within each cluster 

          = The total number of points in each cluster 
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To compute the purity of the arriving data points are divided into 500 windows 

(known as horizon [5]). Average purity in window id defined as: 
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Real-world dataset quality evaluation 

SOStream clustering quality evaluation,  where  horizon = 1K, Stream speed = 1K,  

α = 0.1, λ = 0.1 and MinPts = 2. 

Only a 

single 

class in 

the data 



SOStream: Self Organizing Density-

Based Clustering Over Data Stream 

Sensitivity to parameter changes  

Using real-world dataset [3], we tested SOStream parameters performance 

with different α and MinPts.  
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Sensitivity to parameter changes (cont.) 

Over D-Stream, SOStream improves by an average purity of 5.0% and 

over MR-Stream it improved by 2.1%. 
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Scalability and complexity of SOStream 

SOStream memory cost over the length of the data stream (α = 0.1, MinPts = 2, 

fading and merging threshold = 0.1). MR-Stream is retrieved from [7] 
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Scalability and complexity of SOStream (cont.) 

SOStream execute time using high dimensional KDD CUP99 dataset with 34 

numerical attributes. The sampling data rate is every 25K points.  

    O(n k log k)  
where k is the 

number of micro-

clusters.  
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Conclusions 

We explored a set of techniques for data stream clustering 

• Automatic threshold selection 

• Using online merging 

• Using competitive learning to deal with overlapping clusters 

 

In our prototypical implementation called SOStream the new 

techniques show promise compared to MR-Stream and D-

Stream. 

 

Future work will deal with more thorough evaluation and 

handling noise in data. 
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Thank you! 


