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Abstract—This paper presents an alignment-free technique
to efficiently discover similar regions in large sets of biological
sequences using position sensitive p-mer frequency clustering.
A set of sequences is broken down into segment and then a
frequency distribution over all oligomers of size p (referred
to as p-mers) is obtained to summarize each segment. These
summaries are clustered while the order of segments in the set
of sequences is preserved in a Markov-type model. Sequence
segments within each cluster have very similar DNA/RNA
patterns and form a so called quasi-alignment. This fact can
be used for a variety of tasks such as species characterization
and identification, phylogenetic analysis, functional analysis of
sequences and, as in this paper, for discovering conserved
regions. Our method is computationally more efficient than
multiple sequences alignment since it can apply modern data
stream clustering algorithms which run in time linear in the
number of segments and thus can help discover highly similar
regions across a large number of sequences efficiently. In
this paper, we apply the approach to efficiently discover and
visualize conserved regions in 16S rRNA.

Keywords-DNA/RNA sequences; quasi-alignment; multiple
sequence alignment; conserved sequences

I. INTRODUCTION

Comparing and aligning sequences is a fundamental task
in bioinformatics. Among its many applications is the
identification of similar regions across large numbers of
sequences. Such analysis can provide useful details about
which sequences or regions are characteristic of a particular
species and which parts of sequences are conserved across
multiple species. These applications are typically based on
computationally expensive procedures (e.g., BLAST [1],
BAlibase [2], T-Coffee [3], MAFFT [4], MUSCLE [5], [6],
Kalign [7] and ClustalW2 and ClustalX2 [8]) which find
regions of high similarity across multiple sequences using
expensive sequence alignment. Because of the high com-
putational cost involved, discovering similar regions across
thousands of sequences of a particular genome becomes
practically impossible without the use of high performance
and parallel computing.

Statistical signatures [9] created from nucleotide compo-
sition frequencies offer an alternative to using classic align-
ment. These alignment-free methods reduce processing time

and look promising for whole genome phylogenetic analysis
where previously used methods do not scale well [10].
However, these methods do not produce any alignment
information. Another class of methods has tried to isolate
highly repetitive short patterns across the entire genome by
observation based methods [11], [12]. This technique does
not scale well and can not be used to discover sequence
patterns across multiple sequences.

Clearly, there is a need for an efficient method to discover
similar areas across multiple sequences of a species or
even an entire genome which harnesses the computational
convenience of alignment-free methods while at the same
time providing some, at least, approximate alignment infor-
mation. Such methods can be used to detect coding regions
of DNA sequences, genes with similar or related functions
across genomes, discover phylogenetic relationships, and
characteristic sequences or regions for different species.

Position specific p-mer frequency clustering (based on
the work in [13]) combines the alignment-free approach
with high-throughput data stream clustering techniques to
efficiently produce so called quasi-alignments for large scale
sequence data. In this paper, we discuss the application
of position specific p-mer frequency clustering to identify
regions of high similarity across multiple sequences.

II. REPRESENTING GENETIC SEQUENCES IN A
COMPRESSED FORMAT

Position sensitive p-mer clustering is based on the idea of
comparing sequences using p-mer frequency counts instead
of computationally expensive alignment between the original
sequences. This idea is at the core of so-called alignment-
free methods [9]. However, in contrast to these methods
we count p-mer frequencies in a position specific manner
and then use high-throughput data stream clustering [14] to
group similar sequence segments. This approach completely
avoids expensive alignment of sequences and can be done in
time linear to total number of bases in the data set. However,
because of the clustering of like sequence segments, a prob-
abilistic local quasi-alignment is automatically achieved, i.e.,



segments grouped in the same cluster are considered to be
quasi-aligned.

The occurrences of letters or base compositions {A, C,
T, G} in a genetic sequence provide frequency information.
The occurrences of all patterns of bases of length p generates
a p-mer frequency representation for a sequence. Instead of
global frequencies, we count p-mer frequencies locally to
retain positional information by first splitting the sequence
into segments of a given size L. Within each segment we
count the frequencies for all possible p-mers. We call this
frequency profile a Numerical Summarization Vector (NSV).
For example, suppose we have an input segment containing
ACGTGCACG. If counting 2-mers, the NSV count vector
would be

〈0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0〉
representing counts for the subpatterns
〈AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT,
TA, TC, TG, TT〉

As we move down the input sequence, in each new
segment p-mers are counted. Segment sizes may be varied
and may or may not overlap. Also different values for p
could be used within the same sequences. However, in the
simple case used in this paper these parameters are fixed.

Figure 1 summarizes the model building process. NSVs
representing segments are clustered and in addition the
sequence information for the NSVs is preserved in a directed
graph G = (N,E), where N = c1, c2, . . . , cN is the set
of clusters and E = e1, e1, . . . , eE is the set of transitions
between clusters [15]. This graph can be interpreted as a
Markov chain, however, unlike a classical Markov Model,
each node is not bound to a single symbol but to a cluster
representing similar segments, or, more precisely, segments
with similar p-mer distributions.

Since several NSVs (i.e., segments) can be assigned
to the same cluster, the resulting model compresses the
original sequence (or sequences if several sequences are
clustered into the same model). The directed edges preserve
order information between segments by the probabilities of
traversal from segment to segment during the model building
process. Note that data stream clustering algorithms only
need a single pass over the data which results in a time
complexity linear in the number of bases in the dataset. This
also makes adding new sequences to an existing model fast
since it only depends on the number of bases in the new
sequences. For details see [15].

The similarity between NSVs used for clustering can
be calculated using several measures. Measures suggested
in the literature to compare sequences based on p-mer
counts (alignment-free methods) include Euclidean distance,
squared Euclidean distance, Kullback-Leibler discrepancy
and Mahalanobis distance [9]. Recently, for Simrank [16]
an even simpler similarity measure, the number of matching
p-mers (typically with p = 7), was proposed for efficient
search of very large databases.

The string edit distance [17] is also related to alignment
and is computed in a similar way using dynamic programing.
In the area of approximate string matching Ukkonen pro-
posed to approximate the expensive computation of the edit
distance between two strings by using q-grams (analog to p-
mers in sequences) [18]. First, q-gram profiles are computed
and then the distance between the profiles is calculated using
Manhattan distance. The Manhattan distance between two p-
mer NSVs, x and y, is defined as:

dManhattan(x, y) =

4p∑
i=1

|xi − yi| (1)

Manhattan distance also has a particularly straightforward
interpretation for NSVs. The distance counts the number
of p-mers by which two sequences differ which gives the
following lower bound on the edit distance between the
original sequences sx and sy:

dManhattan(x, y)/(2p) ≤ dEdit(sx, sy) (2)

This relationship is easy to prove since each inser-
tion/deletion/substitution in a sequences destroys at the most
p p-mers and introduces at most p new p-mers. Although,
we can construct two completely different sequences with
exactly the same NSVs (see [18] for a method to create
such strings), we are typically interested in sequences of high
similarity in which case dManhattan(x, y)/(2p) gets closer to
the edit distance. Note, however, that position sensitive p-
mer frequency clustering is not restricted to using Manhattan
distance, it can use any distance/similarity measure defined
on the frequency counts in NSVs.

A p-mer frequency cluster model can be created for a
single sequence or a group of sequences. The advantage of
this approach is that it compresses the sequence information
first by creating NSVs and then reduces the number of NSVs
by clustering. Typically, we will create a cluster model for
a whole family of sequences by simply adding the NSVs
of all sequences to a single model following the procedure
in Figure 1. This will lead to even more compression since
many sequences within a family will share NSV clusters
stemming from similar sequence segments.

III. IMPLEMENTATION USING OPEN SOURCE R PACKAGE
QUASIALIGN

To make the described procedure accessible, we are devel-
oping an R package called QuasiAlign [19]1. The package
is built on top of a data stream clustering package also
developed by one of the authors [15], [20]. The QuasiAlign
package provides various methods for handling and storing
genetic sequences in a database and for creating and vi-
sualizing GenModels. The process used in this paper is as
follows:

1The QuasiAlign package is available at http://r-forge.r-project.org/
projects/mmsa/



CAACATGAGAGTTTGATCCT

Sequence
GGCTCAGAACGAACGCTGG CGGCAGGCTTAACACATGCA AGTCGAGCGCCCCGCAAGGG ...

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

NSV 1 1 1 2 2 2 1 0 1 3 0 0 1 0 1 2 2

NSV 2 2 2 1 0 1 0 2 2 2 2 2 0 0 1 1 0

NSV 3 1 2 1 1 4 0 1 1 0 3 2 0 1 0 1 1

NSV 4 1 0 3 0 1 3 3 0 1 3 2 1 0 1 0 0

Segment 1                       Segment 2                           Segment 3                        Segment 4            more segments

... more NSVs

1

2
3

P-Mer Counts
Cluster Model

Start

NSV 1
NSV 3

NSV 4

NSV 2

Figure 1. The Model Building Process. The sequence is split into several segments. For each segment a Numerical Summary Vectors (NSV) is calculated
by counting the occurrence of p-mers (2-mers in this case). Model building starts with an empty cluster model. As each NSV is processed, it is compared
to the existing clusters of the model. If the NSV is not found to be close enough (using a distance measure on the NSVs) a new cluster is created. For
example Cluster 1 (circle) is created for NSV 1 and Cluster 2 for NSV 2. NSV 3 was found close enough to NSV 1 and thus was also assigned to Cluster 1.
Finally, Cluster 3 is created for NSV 4. In addition to the clusters also the transition information between the clusters (arrows) is recorded. When all NSVs
are processed, the model building process is finished.

1) Load the sequences into the database.
2) Create Numerical Summarization Vectors (NSVs)

from a selected subset of sequences.
3) Use the NSVs to create position sensitive p-mer fre-

quency clustering models called GenModel.
4) Prune or trim the model to remove noise (noise is

represented by sparse clusters).
5) Visualize the model to identify highly similar regions

across sequences.

There exists a function for each of the above tasks in the
QuasiAlign package. Several parameters can be controlled.
For selecting sequences from the database we can select
sequences from a given phylogenetic rank (e.g., rank is
“Phylum” and name is “Firmicutes” selects all sequences
available for Firmicutes). To create NSVs we need to specify
the segment size (default is 100 bases), if there is overlap
between the segments (default is no overlap) and the value
for p (default is 3-mers). Finally, for model building we need
to specify the clustering measure (default is Manhattan) and
the clustering threshold. The default threshold is 30 which
means that we approximately require an edit distance of less
than 5 to cluster two segments together (see Equation 2).
For an in-depth description of all available parameters we
refer the reader to the documentation of the QuasiAlign
package [19].

IV. EXPERIMENTS

A. Dataset

For the experiments presented in this paper, we used a
set of approximately 400,000 16S rRNA sequences from
the Greengenes project [21]. These sequences are widely

used for classification and phylogenetic analysis of micro-
organisms. The QuasiAlign package contains an import rou-
tine for FASTA files from Greengenes which automatically
places them into a relational database. The routine also
extracts the available phylogenetic classification information
and makes it available for querying. Each sequence from the
Greengenes project has a unique identifier which is used as
the primary key in our database.

B. Illustration

GenModels provide vital information about the similarity
of segments and regions which are highly conserved across
multiple sequences can be easily identified. Such areas are
likely to be responsible for a particular function or provide
a needed structural characteristic.

As an illustration, Figure 2 shows a GenModel plot of
sequences from the phylum Dictyoglomi. This very small
phylum consists of 17 16S rRNA sequences which vary
in size between 1400 and 1500 bases. These sequences
have been broken down into segments of size 100 bases,
aggregated using 3-mers and clustered using the default
settings. The resulting GenModel contains 41 clusters. The
plot shows each of the clusters as circles where the number is
just an id, but the circle size represents how many segments
were assigned to it. The arrows represent the order in
which the segments occurred in the original sequences. A
stronger arrow indicates that more sequences have the two
adjacent segments in the same order. For example, Figure 2
shows that one of the common transition paths is the cluster
sequence 1 → 2 → 3 → · · · → 14 → 15 indicating
that most sequences are extremely similar as one would
expect in a set of sequences of a single phylum. In addition
the plot shows that almost all sequences go through a few



Figure 2. GenModel plot from 16S rRNA sequences from the phylum
Dictyoglomi represents the sequences top-down. Circles indicated clusters
of segments and arrows show the order of segments in the original
sequences.

clusters (e.g. 4 and 6) which represent candidates for highly
conserved regions. Interesting in Figure 2 is the almost
completely separate path starting with cluster number 19.
This indicates that a few sequences are very different from
the majority of the sequences in the set. This might indicate
a possible novel strain or might even point to a classification
error which needs to be verified by taxonomists.

Each cluster in Figure 2 consists of members that are
short segments of a larger sequence. The clusters can be
also visualized in terms of common areas in sequences.
Figure 3 shows the approximately 1500 bases (x-axis) for
the 17 sequences (y-axis). The segments grouped into the 4
largest clusters of the GenModel are shown by red horizontal
lines. In this model all red horizontal lines are exactly 100
bases long because a segment length of 100 was chosen.
The segments that are part of the same cluster are joined
by vertical dotted lines and the cluster id from Figure 2 is
shown on top. We see that the well preserved segments are
found in clusters 4, 6, 10 and 14 which corresponds to the
largest clusters where almost all sequences join in Figure 2.
We can make two more interesting observations in Figure 3.
Sequence 3 has all matching segments shifted to the left.
This indicates that the sequence is not complete and there
are bases missing at the beginning of the sequence. Also we
see that sequences 4 and 5 do not contain similar segments
which is consistent with our observation from Figure 2
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Figure 3. Visualizing the position of the segments for the four largest
clusters of the GenModel of Dictyoglomi. These segments indicate well
preserved regions in the sequences.

where a few sequences form a separate path starting with
cluster 19.

Using the R-based package QuasiAlign, we can also
inspect the p-mer distribution in different clusters. Figure
4 shows a barplot of the p-mer distribution for cluster 4
which represents a well preserved segment. The error bars
show the variation of the counts of different p-mers in all
segments that were grouped in the cluster. The plot shows
the absence of certain 3-mers such as AGT, ATA, ATT, etc.
In fact, out of the 43 or 64 possible 3-mers 14 are completely
absent in this cluster across all the sequences.

C. Identifying Conserved Regions in 16S rRNA

It is well known that 16S rRNA contains hypervariable
regions that are highly dissimilar between different species
and are generally thought of as being characteristic of a
particular species [22], [23]. It has also been reported that
the hypervariable regions are flanked by highly conserved
regions on both ends [24], [25]. These conserved regions
have many possible applications such as PCR amplification
using universal primers [22].

Nine identified hypervariable regions in 16S rRNA consist
of nucleotides number 69–99, 137–242, 433–497, 576–682,
822–879, 986–1043, 1117–1173, 1243–1294 and 1435–1465
and are denoted by V1 through V9 respectively. GenModels
can cluster similar segments and can therefore reveal which
segments are highly similar across multiple sequences. We
can use this fact to identify highly similar or conserved
regions in a sample containing diverse species. These regions
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Figure 4. 3-mer distribution of segments grouped into cluster 4 for the GenModel for the phylum Dictyoglomi.

should also contain the known highly conserved regions
which are the ones flanking the hypervariable regions.

The GenModel for the phylum Dictyoglomi contains sev-
eral species and so we would expect greater variations in the
hypervariable regions than in the flanking preserved regions.
Figure 3 shows the 4 largest clusters found for the phylum
Dictyoglomi. The positions of the hypervariable regions are
shown as blue lines with labels V1 through V9 at the top
of the plot. It is very clear that our algorithm identifies the
regions that flank the hypervariable regions. For example,
cluster 4 is to the immediate right of the hypervariable region
V2 and to the immediate left of the hypervariable region
V3. It thus covers the mentioned conserved areas. Similar
arguments can be presented for clusters 6, 10, and 14.

D. Large-scale Experiments

The QuasiAlign package allows efficient large-scale ex-
perimentation, analysis, and visualization. We processed
the entire Greengenes database consisting of over 400,000
sequences using the default settings and analyzed it for
interesting patterns and clusters.

As an example, we present our analysis of the phylum
Fusobacteria. This phylum was chosen because of its abun-
dance in the human gut [26]. The Greengenes database
contains around 1100 sequences of the phylum Fusobac-
teria. It has two major genera—Fusobacterium (with 482
sequences) and Cetobacterium (with 367 sequences). We
have performed the analysis at the genus level this time to
discover highly conserved areas within a given genus and
also in a combined sample of the two genera to inspect
conserved regions across genera. Since sequences from the
same genus are closely related to each other, we would
expect to discover more similarities in the hypervariable

regions than across genera.
Figure 5 highlights the 5 largest clusters from the genus

Fusobacterium. From the plot, it can be seen that the
conserved segments obtained by our model are in close
agreement with the known hypervariable regions. The top
5 identified regions cover most of the hypervariable regions
V4, V5, V6, and V8. These regions were also found to be
very similar when we ran a multiple sequence alignment
on them using Clustal [8]. Greater coverage and more
specificity can easily be obtained by using a smaller segment
size and larger number of clusters which is omitted here for
space restrictions.

Similarly, Figure 6 shows the 5 most conserved regions
in the genus Cetobacterium. Here also a clear overlap can
be seen with the hypervariable regions V1, V2, V5, V6, and
V8.

In the next step, we combine the two genera (Fusobac-
terium and Cetobacterium) and try to find the most similar
regions across the two genera. Since we have now a mixture
of species in this sample, we expect more variation in the
hypervariable regions. This is confirmed when we visual-
ize the 5 most conserved regions (largest clusters) of the
combined model in Figure 7. The most conserved clusters
identified are now the regions flanking hypervariable regions
V2–V7. This indicates that the model is able to efficiently
identify conserved areas across multiple species.

E. Performance Analysis

The standard way to check for similar regions across
a set of sequences is using multiple sequence alignment
(MSA), which is known to be computationally expensive.
Quasi-alignment can find similar regions across a large set
of sequences easily and efficiently. Here we compare the
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Figure 5. Segment similarity plot of the 5 largest clusters from the Genus
Fusobacterium.
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Figure 6. Segment similarity plot of the 5 largest clusters from the Genus
Cetobacterium.

run times of our quasi-alignment method with progressive
MSA, a popular MSA method. We randomly sampled be-
tween 10 and 200 16S rRNA sequences from the over
400,000 sequences available in the Greengenes project [21].
We performed both, MSA and our quasi-alignment based
algorithm, on the sampled subset of sequences and then
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Figure 7. Segment similarity plot of the 5 largest clusters from the Genera
Fusobacterium and Cetobacterium combined.

compared the run times in Figure 8. For the experiments, we
used for progressive MSA the open source tool ClustalW2
[8], which is written in C++ and available for download
at http://www.clustal.org/clustal2/. For quasi-alignment we
used again the R package QuasiAlign with default settings.
The experiments were run on OS X with a 2.6 GHz
Intel Core i7 processor with 8 GB of main memory (both
programs only use a single core).

Figure 8 shows that ClustalW2, which uses progressive
MSA, has a run time polynomial in the number of sequences
(which is much better than the exponential run time needed
for dynamic programming based MSA). However, quasi-
alignment is very fast and the run time only grows linearly
with the number of sequences (and number of found NSV
clusters) making it much more suited for large sets of
sequences. It even enables us to do interactive analysis where
the quasi-alignment is produced in a few seconds on the fly.
Of course, MSA gives us much more alignment information,
however, quasi-alignment can be used on a huge data set
first and then MSA can be used for further analysis of how
segments in a cluster align, reducing the number and size of
sequences to be aligned significantly.

V. DISCUSSION AND FUTURE WORK

In this paper we have presented how sensitive p-mer
frequency clustering, an efficient alignment-free method, can
be used to discover highly conserved regions.

We have performed experiments on 16S rRNA sequences
obtained from the Greengenes project and used out im-
plementation of the R package QuasiAlign to demonstrate
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how several visualization methods can be used to efficiently
identify conserved regions. The identified conserved regions
lie in the immediate vicinity of known hypervariable regions
which is known to be highly conserved.

In this paper we have only presented initial experiments.
Future work we will build models for lower phylogenetic
ranks down to the species level. This will allow us to identify
ultra-conserved regions. Also, we will conduct comprehen-
sive experiment with various parameter such as segment size,
p-mer length, etc. Going to smaller segment sizes will allow
us to find smaller conserved areas more accurately.

The most significant contribution of our work is its
computational efficiency since it provides an approximation
to alignment (a quasi-alignment) without requiring expensive
multiple sequence alignment. The model can be created and
inspected on a standard PC without the requirement of high
performance computing tools.
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