Dissimilarity Plots
A Visual Exploration Tool for Partitional Clustering

Michael Hahsler1 & Kurt Hornik2

1 Intelligent Data Analysis Lab (IDA@SMU)
Dept. of Engineering Management, Information, and Systems, SMU
2 Vienna University of Economics and Business

IE Department Seminar
Department of Industrial, Manufacturing, & Systems Engineering
University of Texas at Arlington
February 9, 2017
Table of Contents

1 Motivation

2 Visualization Techniques for Partitions

3 Seriation

4 Dissimilarity Plots

5 Examples
Cluster Analysis

Clustering assigns objects to groups (clusters) so that objects from the same cluster are more similar to each other than to objects from other clusters.

Applications

- Unsupervised learning of structure in the data and summarizing data.
- Areas: Business (market segmentation), biology (communities), social networks, AI, etc.
Assessment of Cluster Quality

Clustering assigns objects to groups (clusters) so that objects from the same cluster are more similar to each other than to objects from other clusters.

Assess the quality of a cluster solution

- Typically judged by intra and inter-cluster similarities
- Visualization for judging the quality of a clustering and to explore the cluster structure
Dendrograms (Hartigan, 1967) for hierarchical clustering:

Restriction

Dendrograms are only possible for hierarchical/nested clusterings.
Table of Contents

1 Motivation

2 Visualization Techniques for Partitions

3 Seriation

4 Dissimilarity Plots

5 Examples
Projection-based Visualization

Project objects into 2-dimensional space with dimensionality reduction techniques (e.g., PCA, MDS; Pison et al. (1999)).

Problems with dimensionality (figure to the right: MDS/32-dimensional data)
Plot Quality Metrics

Visualize metrics calculated from inter and intra-cluster similarities to judge cluster quality. For example, **silhouette width** (Kaufman and Rousseeuw, 1990).

→ Only a diagnostic tool for cluster quality
Other Visualization Methods

Several other visualization methods (e.g., based on self-organizing maps and neighborhood graphs, shadow plots, shadow-stars, stripes plots) are reviewed and introduced in Leisch (2008, 2010).

- Typically hide structure within clusters or
- are limited by the number of clusters and dimensionality of data.

[Neighborhood graph diagram]
Dissimilarity Matrix Shading and CLUSION

Each cell of the (dissimilarity) matrix is represented by a gray value (Sneath and Sokal, 1973; Ling, 1973; Gale et al., 1984). Initially matrix shading was used with hierarchical clustering → **heatmaps**.

For graph-based partitional clustering: **CLUSION** (Strehl and Ghosh, 2003). Uses **coarse seriation** such that “good” clusters from blocks around the main diagonal.

CLUSION allows to judge cluster quality but does not reveal the structure of the data

→ **Dissimilarity plots**

Improve matrix shading/CLUSION with (near) optimal placement of clusters and objects within clusters using **seriation**
Table of Contents

1 Motivation

2 Visualization Techniques for Partitions

3 Seriation

4 Dissimilarity Plots

5 Examples
Part of **combinatorial data analysis** (Arabie and Hubert, 1996)

- **Aim:** arrange objects in a linear order given available data and some loss function in order to reveal structural information.

- **Problem:** Requires to solve a discrete optimization problem → solution space grows by the order of $O(n!)$
Seriation I

Part of **combinatorial data analysis** (Arabie and Hubert, 1996)

- **Aim:** arrange objects in a linear order given available data and some loss function in order to reveal structural information.

- **Problem:** Requires to solve a discrete optimization problem
 → solution space grows by the order of $O(n!)$

Techniques:

1. Partial enumeration methods (currently solve problems with $n \leq 40$)
 - dynamic programming (Hubert et al., 1987)
 - branch-and-bound (Brusco and Stahl, 2005)

2. Heuristics for larger problems
Set of n objects $\mathcal{O} = \{O_1, O_2, \ldots, O_n\}$.

Symmetric dissimilarity matrix $\mathbf{D} = \{d_{ij}\}$, where d_{ij} for $1 \leq i, j \leq n$ represents the dissimilarity between O_i and O_j, and $d_{ii} = 0$ for all i.

Permutation function $\psi_\pi(\mathbf{D}) = \{d_{\pi(i),\pi(j)}\} = \mathbf{P}_\pi \mathbf{D} \mathbf{P}_\pi^T$ reorders the objects in \mathbf{D} by simultaneously permuting rows and columns according to a permutation π. ($\mathbf{P}_\pi = \psi_\pi(\mathbf{I}_n)$)

A loss function L to evaluate a given permutation.

\mathbf{D}

<table>
<thead>
<tr>
<th></th>
<th>O_3</th>
<th>O_2</th>
<th>O_1</th>
<th>O_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>O_2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O_1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>O_4</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

$\pi = \{3, 2, 1, 4\}$
Set of \(n \) objects \(\mathcal{O} = \{O_1, O_2, \ldots, O_n\} \).

Symmetric dissimilarity matrix \(\mathbf{D} = \{d_{ij}\} \), where \(d_{ij} \) for \(1 \leq i, j \leq n \) represents the dissimilarity between \(O_i \) and \(O_j \), and \(d_{ii} = 0 \) for all \(i \).

Permutation function \(\psi_\pi(\mathbf{D}) = \{d_{\pi(i),\pi(j)}\} = \mathbf{P}_\pi \mathbf{D} \mathbf{P}_\pi^T \) reorders the objects in \(\mathbf{D} \) by simultaneously permuting rows and columns according to a permutation \(\pi \). \((\mathbf{P}_\pi = \psi_\pi(\mathbf{I}_n))\)

A loss function \(L \) to evaluate a given permutation.

Optimization problem

\[
\text{minimize } Z = L(\psi_\pi(\mathbf{D}))
\]
\[
\text{s.t. } \psi_\pi \in \Psi \text{ (valid perm)}
\]
Seriation II

- Set of n objects $O = \{O_1, O_2, \ldots, O_n\}$.
- Symmetric dissimilarity matrix $D = \{d_{ij}\}$, where d_{ij} for $1 \leq i, j \leq n$ represents the dissimilarity between O_i and O_j, and $d_{ii} = 0$ for all i.
- Permutation function $\psi_\pi(D) = \{d_{\pi(i), \pi(j)}\} = P_\pi D P_\pi^T$ reorders the objects in D by simultaneously permuting rows and columns according to a permutation π. ($P_\pi = \psi_\pi(I_n)$)
- A loss function L to evaluate a given permutation.

Optimization problem

\[
\text{minimize } Z = L(\psi_\pi(D)) \\
\text{s.t. } \psi_\pi \in \Psi \text{ (valid perm)}
\]

How should the loss function be defined?
Perfect anti-Robinson matrix (Robinson, 1951): A symmetric matrix where the values in all rows and columns only increase when moving away from the main diagonal. Gradient conditions (Hubert et al., 1987):

- **within rows:** \(d_{ik} \leq d_{ij} \) for \(1 \leq i < k < j \leq n \);
- **within columns:** \(d_{kj} \leq d_{ij} \) for \(1 \leq i < k < j \leq n \).

Moves similar items \((O_1\) and \(O_3\)) closer together.

Note: Most matrices can only be brought into a near anti-Robinson form.
Loss measure (quantifies the divergence from anti-Robinson form):

\[
L(D) = \sum_{i<k<j} f(d_{ik}, d_{ij}) + \sum_{i<k<j} f(d_{kj}, d_{ij})
\]

where \(f(\cdot, \cdot) \) is a function which defines how a violation or satisfaction of a gradient condition for an object triple \((O_i, O_k \text{ and } O_j)\) is counted.
Column/Row Gradient Measures II

Loss measure (quantifies the divergence from anti-Robinson form):

\[L(D) = \sum_{i<k<j} f(d_{ik}, d_{ij}) + \sum_{i<k<j} f(d_{kj}, d_{ij}) \]

where \(f(\cdot, \cdot) \) is a function which defines how a violation or satisfaction of a gradient condition for an object triple \((O_i, O_k, \text{and} O_j)\) is counted.

Raw number: Violations minus satisfactions:

\[f(z, y) = \text{sign}(y - z) = \begin{cases} -1 & \text{if} \quad z > y; \\ 0 & \text{if} \quad z = y; \\ +1 & \text{if} \quad z < y. \end{cases} \]
Loss measure (quantifies the divergence from anti-Robinson form):

\[
L(D) = \sum_{i<k<j} f(d_{ik}, d_{ij}) + \sum_{i<k<j} f(d_{kj}, d_{ij})
\]

where \(f(\cdot, \cdot) \) is a function which defines how a violation or satisfaction of a gradient condition for an object triple \((O_i, O_k, \text{and} O_j)\) is counted.

Raw number: Violations minus satisfactions:

\[
f(z, y) = \text{sign}(y - z) = \begin{cases}
-1 & \text{if } z > y; \\
0 & \text{if } z = y; \\
+1 & \text{if } z < y.
\end{cases}
\]

Weighted: Weight each satisfaction or violation by its magnitude (absolute difference between the values):

\[
f(z, y) = |y - z| \text{sign}(y - z) = y - z
\]
Hamiltonian Path Length

- \(D \) is seen as a finite weighted graph \(G = (\Omega, E) \) with \(\Omega = \{O_1, O_2, \ldots, O_n\} \) and the weight \(w_{ij} \) for edge \(e_{ij} \in E \) represents \(d_{ij} \).
- An order \(\Psi \) can be seen as a Hamiltonian path through the graph.
- Minimizing the path length results in a seriation optimal with respect to dissimilarities between neighboring objects (Hubert, 1974; Caraux and Pinloche, 2005).

Loss function:

\[
L(D) = \sum_{i=1}^{n-1} d_{i,i+1}
\]

This optimization problem is related to the traveling salesperson problem (Gutin and Punnen, 2002) for which good solvers and efficient heuristics exist.
Seriation Criteria

<table>
<thead>
<tr>
<th>Measure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient conditions</td>
<td></td>
</tr>
<tr>
<td>Anti-Robinson (AR) events (Chen, 2002)</td>
<td>[\sum_{i<k<j} f(d_{ik}, d_{ij}) + f(d_{kj}, d_{ij}),] with [f(x, y) = I(x > y)]</td>
</tr>
<tr>
<td>AR deviations (Chen, 2002)</td>
<td>with [f(x, y) =</td>
</tr>
<tr>
<td>Gradient measure (Hubert et al., 2001)</td>
<td>with [f(x, y) = -\text{sign}(y - x)]</td>
</tr>
<tr>
<td>Weighted gradient measure (Hubert et al., 2001)</td>
<td>with [f(x, y) = -</td>
</tr>
<tr>
<td>Relative generalized Anti-Robinson events (RGAR) (Tien et al., 2008)</td>
<td>[\frac{1}{m} \sum_{i=1}^{n} \left(\sum_{i-w}^{i+w} I(d_{ik} < d_{ij}) + \sum_{i-k}^{i+j} I(d_{kj} > d_{ij}) \right),] with window size (1 < w < n) and (m = \left(\frac{2}{3} - n \right)w + nw^2 - \frac{2}{3}w^3)</td>
</tr>
<tr>
<td>Rank/dissimilarity agreement</td>
<td></td>
</tr>
<tr>
<td>Least squares criterion (Caraux and Pinloche, 2005)</td>
<td>[\sum_{i,j=1}^{n} (d_{ij} -</td>
</tr>
<tr>
<td>Inertia criterion (Caraux and Pinloche, 2005)</td>
<td>[-1 \times \sum_{i,j=1}^{n} d_{ij}(i - j)^2]</td>
</tr>
<tr>
<td>2-Sum criterion (Barnard et al., 1993)</td>
<td>[\sum_{i,j=1}^{n} \frac{1}{1 + d_{ij}}(i - j)^2]</td>
</tr>
<tr>
<td>Linear seriation criterion (LS) (Hubert and Schultz, 1976)</td>
<td>[-1 \times \sum_{i,j=1}^{n} d_{ij}</td>
</tr>
<tr>
<td>Banded anti-Robinson form (BAR) (Earle and Hurley, 2015)</td>
<td>[\sum_{</td>
</tr>
<tr>
<td>Path length</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian path length (PL) (Hubert, 1974; Caraux and Pinloche, 2005)</td>
<td>[\sum_{i=1}^{n-1} d_{i,i+1}]</td>
</tr>
</tbody>
</table>

Table: Popular seriation criteria.

Seriation Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Objective function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion optimization methods</td>
<td></td>
</tr>
<tr>
<td>Integer linear programming (ILP) (Brusco, 2002)</td>
<td>Gradient conditions</td>
</tr>
<tr>
<td>Dynamic programming (Hubert et al., 2001)</td>
<td>Gradient conditions</td>
</tr>
<tr>
<td>Branch-and-bound (Brusco and Stahl, 2005)</td>
<td>Gradient conditions</td>
</tr>
<tr>
<td>Genetic algorithm (Goldberg, 1989; Soltysiak and Jaskulski, 1998)</td>
<td>Various</td>
</tr>
<tr>
<td>Simulated annealing (ARSA) (Brusco et al., 2008)</td>
<td>Gradient measure</td>
</tr>
<tr>
<td>Spectral seriation (Atkins et al., 1999; Ding and He, 2004; Fogel et al., 2014)</td>
<td>2-Sum criterion</td>
</tr>
<tr>
<td>TSP solver (various) (Wilkinson, 1971)</td>
<td>Hamiltonian path length</td>
</tr>
<tr>
<td>Quadratic assignment problem heuristic (QAP) (Hubert and Schultz, 1976; Caraux and Pinloche, 2005; Goulernas et al., 2016)</td>
<td>2-Sum criterion, linear seriation, inertia or BAR</td>
</tr>
<tr>
<td>Dendrogram methods</td>
<td></td>
</tr>
<tr>
<td>Hierarchical clustering (HC) (Eisen et al., 1998)</td>
<td>Other (depends on linkage)</td>
</tr>
<tr>
<td>Gruvaeus and Wainer reordering (GW) (Gruvaeus and Wainer, 1972)</td>
<td>Restricted path length</td>
</tr>
<tr>
<td>Optimal leaf ordering reordering (OLO) (Bar-Joseph et al., 2001)</td>
<td>Restricted path length</td>
</tr>
<tr>
<td>DendSer reordering (Earle and Hurley, 2015)</td>
<td>Various (restricted)</td>
</tr>
<tr>
<td>Other methods</td>
<td></td>
</tr>
<tr>
<td>Multidimensional scaling (MDS) (Kendall, 1971)</td>
<td>Other (stress)</td>
</tr>
<tr>
<td>Rank-two ellipse seriation (R2E) (Chen, 2002)</td>
<td>None</td>
</tr>
<tr>
<td>Sorting Points Into Neighborhoods (SPIN) (Tsafrir et al., 2005)</td>
<td>Other (energy)</td>
</tr>
<tr>
<td>Visual Assessment of Tendency (VAT) (Bezdek and Hathaway, 2002)</td>
<td>Other (MST)</td>
</tr>
</tbody>
</table>

Table: Popular seriation techniques.

Table of Contents

1. Motivation

2. Visualization Techniques for Partitions

3. Seriation

4. Dissimilarity Plots

5. Examples
Creating Dissimilarity Plots

1. **Split** \mathcal{D} into clusters using the assignment function Γ provided by the partitional clustering algorithm.

2. **Arrange objects:** Use Ψ_1, \ldots, Ψ_k to show micro-structure.

3. **Arrange clusters:** Ψ_c places more similar clusters together (macro-structure).
Arrange Clusters

Find Ψ_c based on inter-cluster dissimilarity matrix D_c which aggregates dissimilarities between all pairs of clusters given dissimilarities between all elements of the clusters in D.

Hierarchical clustering: dissimilarities between two sets of objects \mathcal{X} and \mathcal{Y}

- complete-link: $d_c(\mathcal{X}, \mathcal{Y}) = \max\{d(x, y) : x \in \mathcal{X}, y \in \mathcal{Y}\}$
- single-link: $d_s(\mathcal{X}, \mathcal{Y}) = \min\{d(x, y) : x \in \mathcal{X}, y \in \mathcal{Y}\}$
- average-link: $d_a(\mathcal{X}, \mathcal{Y}) = \frac{1}{|\mathcal{X}| \cdot |\mathcal{Y}|} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} d(x, y)$

Set theory: Hausdorff metric (Hausdorff, 2001)

$$d_H(\mathcal{X}, \mathcal{Y}) = \max\{\sup_{x \in \mathcal{X}} \inf_{y \in \mathcal{Y}} d(x, y), \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} d(x, y)\}$$

The Hausdorff metric pairs up each element from one set with the most similar element from the other set and then finds the largest dissimilarity in such element pairs.
Table of Contents

1 Motivation

2 Visualization Techniques for Partitions

3 Seriation

4 Dissimilarity Plots

5 Examples
Used Seriation Methods

We use the column/row gradient measure as the loss function for seriation.

1. Placement (seriation) of clusters: Average-link, row/column gradient measure using branch-and-bound to find the optimal solution.

2. Placement (seriation) of objects within each cluster: row/column gradient measure uses a simulated annealing heuristic.

Seriation algorithms are provided by Brusco and Stahl (2005) and are available in the R extension package seriation (Hahsler et al., 2016).
Ruspini data set (Ruspini, 1970) with 75 points in two-dimensional space with four clearly distinguishable groups.

Euclidean distances and k-medoids clustering algorithm (partitioning around medoids (PAM) (Kaufman and Rousseeuw, 1990)) to produce a partition with $k = 4$
Easily Distinguishable Groups II

Coarse seriation

Dissimilarity plot
Mis-specification of the Number of Clusters I

Coarse seriation, $k = 3$

Dissimilarity plot, $k = 3$
Mis-specification of the Number of Clusters II

Coarse seriation, $k = 7$

Dissimilarity plot, $k = 7$
No Structure I

Random data for 250 objects in \mathbb{R}^5: $X_1, X_2, \ldots, X_5 \sim N(0, 1)$

Euclidean distance and PAM with $k = 10$

These two components explain 45.85 % of the point variability.

Average silhouette width : 0.13

n = 250

10 clusters C_j

j n_j $\text{ave}_{a \in C_j} s_i$

1 : 27 | 0.08
2 : 25 | 0.11
3 : 28 | 0.29
4 : 40 | 0.12
5 : 21 | 0.01
6 : 26 | 0.07
7 : 22 | 0.15
8 : 20 | 0.11
9 : 19 | 0.25
10 : 22 | 0.06
No Structure II

Coarse seriation

Dissimilarity plot
VOTES data set (UCI Repository of Machine Learning Databases (Blake and Merz, 1998)). Votes for each of the U.S. House of Representatives congressmen on the 16 key votes during the second session of 1984.

- **Coding:** 2 variables per vote (in favor/against)
 → Each congressman is represented by a vector in \(\{0, 1\}^{32} \)

- **Dissimilarity measure:** Jaccard dissimilarity (Sneath and Sokal, 1973) between congressmen. Let \(S_i \) and \(S_j \) be the sets of votes two congressmen cast. Then the Jaccard dissimilarity

\[
d_{ij} = 1 - \frac{S_i \cap S_j}{S_i \cup S_j}.
\]

- **Cluster algorithm:** PAM with \(k = 12 \)
 (the first bump of average silhouette for \(k = 2, 3, \ldots, 30 \))
These two components explain 40.59% of the point variability.

Silhouette width s_i

<table>
<thead>
<tr>
<th>Cluster j</th>
<th>n_j</th>
<th>$\text{avg}_{e \in C_j} s_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>-0.01</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>0.08</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>0.27</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>0.07</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>0.33</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Average silhouette width: 0.14
High-dimensional Data III

Coarse seriation, threshold=0.7

Dissimilarity plot, threshold=0.7
Cluster composition (clusters reordered by dissimilarity plot)
Conclusion

Advantages of dissimilarity plots

- Scales well with dimensionality of data (visualizes dissimilarities)
- Shows cluster quality (block structure)
- Visual analysis of cluster structure (placement of clusters)
- Visual analysis of micro-structure (placement of objects)
- Makes misspecification of number of clusters apparent (placement of clusters/objects)

Enhancements for large number of objects/clusters

- **Object sampling:** Reduces the size of the dissimilarity matrix, however, details are sacrificed.
- **Image downsampling:** pixel skipping, pixel averaging, 2D discrete wavelet transformation
- **Interactive plot:** Plot with only average between-cluster similarities and then separate plot for each cluster (inter-cluster structures).
Further Reading

Code

Dissimilarity plot and seriation methods are implemented in the R extension package seriation (Hahsler et al., 2016) and are freely available via the Comprehensive R Archive Network at

https://CRAN.R-project.org/package=seriation.
References

References IV

References V

References VI

