

An Association Rule Mining Infrastructure for the R Data Analysis Toolbox

Michael Hahsler $^{\left(1\right)}$ and Kurt Hornik $^{\left(2\right)}$

- ⁽¹⁾ Department of Information Systems and Operations Vienna University of Economics and Business Administration
- ⁽²⁾ Department of Statistics and Mathematics Vienna University of Economics and Business Administration

Presented at the 30th Annual Conference of the German Classification Society Berlin, March 9, 2006

Motivation

- The aim of association rule mining is to discover *interesting patterns* (e.g., association rules) in "large" databases containing *transaction data*.
- To support association rule mining in R, we need a suitable infrastructure which provides:
 - 1. Efficient handling transaction data and patterns.
 - 2. Capabilities to analyze and manipulate transaction data and patterns.
 - 3. Mining algorithms.
 - 4. Measures of interestingness.

Such an infrastructure is provided by arules.

Outline of the Talk

- 1. Transaction data and association rules
- 2. The **arules** infrastructure
- 3. Example: Market basket analysis

Transaction Data

Example of market basket data:

transaction ID			items					
II ANSACIIUN ID	ILEITIS			milk	bread	butter	beer	
1	milk, bread	-	1	4	1	0		
2	bread, butter	ns	I			0	0	
		.0	2	0	1	1	0	
3	beer	act	S	Ο	Ο	Ο	1	
4	milk, bread, butter	S	S	0	0	0		
		an	4	1	1	1	0	
5	bread, butter	tra	5	0	1	1	0	

Formally, let $I = \{i_1, i_2, \dots, i_n\}$ be a set of n binary attributes called *items*. Let $\mathcal{D} = \{t_1, t_2, \dots, t_m\}$ be a set of *transactions* called the *database*. Each transaction in \mathcal{D} has an unique transaction ID and contains a subset of the items in I.

Transaction Data (2)

Transaction data can originate from various sources, e.g.:

 POS-systems collect large quantities of records (transactions) containing the products/product categories purchased during a shopping trip (*Market Baskets*).

Used by retailers for *Market Basket Analysis* for, e.g., segmentation, cross-selling opportunities (Russell et al. 1997; Berry & Linoff 1997)

Categorical and metric attributed of other data sources (e.g., *survey data*) can be mapped to binary attributes (Piatetsky-Shapiro 1991; Hastie et al. 2001).

Used to discover interesting relationships between values of the attributes (e.g., between a certain age group and high income).

Association Rules

- A *rule* is defined as an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ and $X \cap Y = \emptyset$. The sets of items (for short *itemsets*) X and Y are called *antecedent* (left-hand-side or lhs) and *consequent* (right-hand-side or rhs) of the rule.
- To select "interesting" *association rules* (Agrawal et al. 1993) from the set of all possible rules minimum constraints for two measures are used:
 - The support supp(X) of an itemset X is defined as the proportion of transactions in the database which contain the itemset.
 - The confidence of a rule is defined $conf(X \Rightarrow Y) = supp(X \cup Y)/supp(X).$
- Typical rule: {bread, milk} \Rightarrow {butter} (supp = 0.05, conf = 0.6)
- Efficient algorithms to find all association rules given the constraints are, e.g., Apriori, Eclat.

The arules Infrastructure

Simplified UML class diagram implemented in R (S4)

- Uses the *sparse matrix representation* (from package **Matrix** by Bates & Maechler (2005)) for transactions and associations.
- Abstract associations class for extensibility.
- Interfaces for Apriori and Eclat (implemented by Borgelt (2003)) to mine association rules and frequent itemsets.
- Provides *comprehensive analysis and manipulation capabilities* for transactions and associations (subsetting, sampling, visual inspection, etc.).

Example: Market basket analysis

Data Set

- 1 month (30 days) of real-world POS transaction¹ data from a typical local grocery outlet.
- Aggregated to product categories (e.g., "popcorn").
- 9835 transactions with 169 different categories.

Goal of the store manager

• To obtain segment specific association rules to support promoting the product category "beef".

¹The data set included in package **arules** under the name Groceries.

Example: Segmentation

Find subsets of the database which represent different types of shopping behavior (e.g., small baskets at lunch time and rather large baskets on Fridays)

- > library("arules")
- > data("Groceries")
- > s <- sample(Groceries, 2000)</pre>
- > d <- dist(as(s, "matrix"), method = "binary")</pre>

For segmentation we use Partitioning Around Medoids (PAM) from package cluster (Maechler 2006) with k = 8.

- > library("cluster")
- > labels <- pam(d, k = 8, cluster = TRUE)</pre>

Example: Segmentation (2)

Visual inspection with (re-ordered) dissimilarity matrix shading.

- > library("cba")
- > clu <-
- + cluproxplot(d,
- + labels)

(in package **cba** by Buchta & Hahsler (2006))

Cluster proximity plot

Example: Segmentation (3)

To predict labels for the whole data set based on the clustered sample, we use the nearest neighbor approach. Cross-distances are, e.g., implemented as the function dists() in package **cba**.

```
> xd <- dists(as(Groceries, "matrix") == 1,</pre>
```

```
+ as(s, "matrix") == 1, method = "binary")
```

```
> allLabels <- labels[max.col(-xd)]</pre>
```

We use the labels for all transactions (allLabels) to generate the list C of transaction data sets, one for each cluster.

```
> C <- split(Groceries, allLabels)</pre>
```

Example: Segmentation (4)

Inspect cluster profiles of two distinct clusters:

- 1. Cluster 8: Most compact cluster (highest avg. silhouette width)
- 2. Cluster 3: Largest average basket size
- > itemFrequencyPlot(C[[8]], population = s, support = 0.05)
 > itemFrequencyPlot(C[[3]], population = s, support = 0.05)

Example: Mining Association Rules

We mine association rules from the transactions in cluster 8 with a minimum support of 0.5% and a minimum confidence of 20%.

> rules <- apriori(C[[8]], parameter = list(support = 0.005, + confidence = 0.2), control = list(verbose = FALSE)) > rules

```
set of 13255 rules
```

In a second step, we find the rules which have the product category "beef" in the right-hand-side (equivalent to rule template $* \Rightarrow \{\text{beef}\}$).

> beefRules <- subset(rules, subset = rhs %in% "beef")</pre>

```
> beefRules
```

set of 268 rules

Example: Mining Association Rules (2)

The store manager can now analyze the found 268 rules. As an example, we show the 3 rules with the highest confidence values.

> inspect(head(SORT(beefRules, by = "confidence"), n = 3))

	lhs		rhs	support	confidence	lift
1	{sausage,					
	root vegetables,					
	butter}	=>	{beef}	0.005411	0.6250	3.438
2	{pork,					
	berries}	=>	{beef}	0.005411	0.5263	2.895
3	{root vegetables,					
	whole milk,					
	butter,					
	rolls/buns}	=>	{beef}	0.005952	0.5238	2.881

Conclusion

The main properties of the flexible **arules** infrastructure are:

- Efficient storage of transaction data and associations in sparse matrix representation.
- A rich set of functions for analyzing and manipulation transaction data and associations.
- Interfaces to fast mining algorithms (Apriori, Eclat).
- Extensible class structure (e.g., for adding new types of associations).

The **arules** infrastructure provides the foundation for new applications. For example,

- computations with sets of associations,
- clustering itemsets or rules (Strehl et al., 1999),
- experiments with probabilistic models of transaction data (mixture models; Cadez et al. 2001).