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Motivation

e The aim of association rule mining is to discover interesting patterns (e.g.,
association rules) in “large” databases containing transaction data.

e To support association rule mining in R, we need a suitable infrastructure
which provides:

1. Efficient handling transaction data and patterns.

2. Capabilities to analyze and manipulate transaction data and patterns.
3. Mining algorithms.

4. Measures of interestingness.

Such an infrastructure is provided by arules .
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Outline of the Talk

1. Transaction data and association rules
2. The arules infrastructure

3. Example: Market basket analysis

Michael Hahsler and Kurt Hornik 3

Berlin, March 9, 2006



Transaction Data

Example of market basket data:

transaction ID | items
1 milk, bread
2 bread, butter
3 beer
4 milk, bread, butter
5 bread, butter
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., in } be a set of n binary attributes called items.
.t} be a set of transactions called the database. Each
transaction in D has an unique transaction ID and contains a subset of the
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Transaction Data (2)

Transaction data can originate from various sources, e.g.:

e POS-systems collect large quantities of records (transactions) containing

the products/product categories purchased during a shopping trip (Market
Baskets).

Used by retailers for Market Basket Analysis for, e.g., segmentation,
cross-selling opportunities (Russell et al. 1997; Berry & Linoff 1997)

e Categorical and metric attributed of other data sources (e.g., survey data)

can be mapped to binary attributes (Piatetsky-Shapiro 1991; Hastie et al.
2001).

Used to discover interesting relationships between values of the attributes
(e.g., between a certain age group and high income).
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Assoclation Rules

e A rule is defined as an implication of the form X = Y where X,Y C [
and X N'Y = (). The sets of items (for short itemsets) X and Y are
called antecedent (left-hand-side or Ihs) and consequent (right-hand-side
or rhs) of the rule.

e To select “interesting” association rules (Agrawal et al. 1993) from the set
of all possible rules minimum constraints for two measures are used:

- The support supp(X ) of an itemset X is defined as the proportion of
transactions in the database which contain the itemset.

- The confidence of a rule is defined
conf(X = Y) =supp(X UY)/supp(X).

e Typical rule: {bread, milk} = {butter} (supp = 0.05, conf = 0.6)

e Efficient algorithms to find all association rules given the constraints are,
e.g., Apriori, Eclat.
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The arules Infrastructure

associations
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transactioninfo : data.frame _[> itemlinfo : data.frame & dgCMatrix

Simplified UML class diagram implemented in R (S4)

e Uses the sparse matrix representation (from package Matrix by Bates &
Maechler (2005)) for transactions and associations.

e Abstract associations class for extensibility.

e Interfaces for Apriori and Eclat (implemented by Borgelt (2003)) to mine
association rules and frequent itemsets.

e Provides comprehensive analysis and manipulation capabilities for transactions
and associations (subsetting, sampling, visual inspection, etc.).
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Example: Market basket analysis

Data Set

e 1 month (30 days) of real-world POS transaction® data from a typical local
grocery outlet.

e Aggregated to product categories (e.g., “popcorn”).

e 9835 transactions with 169 different categories.
Goal of the store manager

e To obtain segment specific association rules to support promoting the
product category “beef”.

'The data set included in package arules under the name Groceries .

Michael Hahsler and Kurt Hornik 8 Berlin, March 9, 2006



Example: Segmentation

Find subsets of the database which represent different types of shopping
behavior (e.g., small baskets at lunch time and rather large baskets on
Fridays)

> library("arules")
> data("Groceries")

> s <- sample(Groceries, 2000)
> d <- dist(as(s, "matrix"), method = "binary")

For segmentation we use Partitioning Around Medoids (PAM) from package
cluster (Maechler 2006) with k = 8.

> library("cluster")
> |abels <- pam(d, k = 8, cluster = TRUE)
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Example: Segmentation (2)

Cluster proximity plot

1 3 7 2 4 6 5 8

Visual inspection with
(re-ordered) dissimilarity
matrix shading.

> library("cba") ’
> clu <-

+ cluproxplot(d, ’
+ labels) ,
(in package cba by Buchta *
& Hahsler (2006)) °

‘ =
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Example: Segmentation (3)

To predict labels for the whole data set based on the clustered sample, we
use the nearest neighbor approach. Cross-distances are, e.g., implemented
as the function dists() In package cba.

> xd <- dists(as(Groceries, "matrix") == 1,
+ as(s, "matrix") == 1, method = "binary")
> allLabels <- labels[max.col(-xd)]

We use the labels for all transactions (allLabels ) to generate the list C' of
transaction data sets, one for each cluster.

> C <- split(Groceries, allLabels)
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Example: Segmentation (4)

Inspect cluster profiles of two distinct clusters:

1. Cluster 8. Most compact cluster (highest avg. silhouette width)

2. Cluster 3: Largest average basket size
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Example: Mining Association Rules

We mine association rules from the transactions in cluster 8 with a minimum
support of 0.5% and a minimum confidence of 20%.

> rules <- apriori(C[[8]], parameter = list(support = 0.005,
+ confidence = 0.2), control = list(verbose FALSE))
> rules

set of 13255 rules

In a second step, we find the rules which have the product category “beef” in
the right-hand-side (equivalent to rule template * = {beef}).

> beefRules <- subset(rules, subset = rhs %in% "beef")
> beefRules

set of 268 rules
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Example: Mining Association Rules (2)

The store manager can now analyze the found 268 rules. As an example, we
show the 3 rules with the highest confidence values.

> inspect(head(SORT(beefRules, by = "confidence"), n = 3))

lhs rhs support confidence lift
1 {sausage,
root vegetables,
butter} => {beef} 0.005411 0.6250 3.438

2 {pork,

berries} => {beef} 0.005411 0.5263 2.895
3 {root vegetables,

whole milk,

butter,
rolls/buns} => {beef} 0.005952 0.5238 2.881
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Conclusion

The main properties of the flexible arules infrastructure are:
e Efficient storage of transaction data and associations in sparse matrix
representation.

e A rich set of functions for analyzing and manipulation transaction data and
associations.

e Interfaces to fast mining algorithms (Apriori, Eclat).
e Extensible class structure (e.g., for adding new types of associations).

The arules infrastructure provides the foundation for new applications. For
example,

e computations with sets of associations,
e clustering itemsets or rules (Strehl et al., 1999),

e experiments with probabilistic models of transaction data (mixture models;
Cadez et al. 2001).
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