An Association Rule Mining Infrastructure for the R Data Analysis Toolbox

Michael Hahsler\(^{(1)}\) and Kurt Hornik\(^{(2)}\)

\(^{(1)}\) Department of Information Systems and Operations
Vienna University of Economics and Business Administration

\(^{(2)}\) Department of Statistics and Mathematics
Vienna University of Economics and Business Administration

Presented at the 30th Annual Conference of the German Classification Society
Berlin, March 9, 2006
Motivation

• The aim of association rule mining is to discover *interesting patterns* (e.g., association rules) in “large” databases containing *transaction data*.

• To support association rule mining in R, we need a suitable infrastructure which provides:

 1. Efficient handling transaction data and patterns.
 2. Capabilities to analyze and manipulate transaction data and patterns.
 3. Mining algorithms.

 Such an infrastructure is provided by arules.
Outline of the Talk

1. Transaction data and association rules

2. The arules infrastructure

3. Example: Market basket analysis
Transaction Data

Example of market basket data:

<table>
<thead>
<tr>
<th>transaction ID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>milk, bread</td>
</tr>
<tr>
<td>2</td>
<td>bread, butter</td>
</tr>
<tr>
<td>3</td>
<td>beer</td>
</tr>
<tr>
<td>4</td>
<td>milk, bread, butter</td>
</tr>
<tr>
<td>5</td>
<td>bread, butter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>milk</td>
</tr>
<tr>
<td>transactions</td>
<td>bread</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>butter</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>beer</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Formally, let $I = \{i_1, i_2, \ldots, i_n\}$ be a set of n binary attributes called *items*. Let $D = \{t_1, t_2, \ldots, t_m\}$ be a set of *transactions* called the *database*. Each transaction in D has an unique transaction ID and contains a subset of the items in I.
Transaction Data (2)

Transaction data can originate from various sources, e.g.:

- **POS-systems** collect large quantities of records (transactions) containing the products/product categories purchased during a shopping trip (Market Baskets).

 Used by retailers for Market Basket Analysis for, e.g., segmentation, cross-selling opportunities (Russell et al. 1997; Berry & Linoff 1997)

- Categorical and metric attributed of other data sources (e.g., survey data) can be mapped to binary attributes (Piatetsky-Shapiro 1991; Hastie et al. 2001).

 Used to discover interesting relationships between values of the attributes (e.g., between a certain age group and high income).
Association Rules

- A rule is defined as an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ and $X \cap Y = \emptyset$. The sets of items (for short itemsets) X and Y are called antecedent (left-hand-side or lhs) and consequent (right-hand-side or rhs) of the rule.

- To select “interesting” association rules (Agrawal et al. 1993) from the set of all possible rules minimum constraints for two measures are used:

 - The support $\text{supp}(X)$ of an itemset X is defined as the proportion of transactions in the database which contain the itemset.

 - The confidence of a rule is defined

 $\text{conf}(X \Rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)}$.

- Typical rule: \{bread, milk\} \Rightarrow \{butter\} ($\text{supp} = 0.05$, $\text{conf} = 0.6$)

- Efficient algorithms to find all association rules given the constraints are, e.g., Apriori, Eclat.
The arules Infrastructure

Simplified UML class diagram implemented in R (S4)

- Uses the *sparse matrix representation* (from package `Matrix` by Bates & Maechler (2005)) for transactions and associations.
- *Abstract associations class* for extensibility.
- Interfaces for *Apriori* and *Eclat* (implemented by Borgelt (2003)) to mine association rules and frequent itemsets.
- Provides *comprehensive analysis and manipulation capabilities* for transactions and associations (subsetting, sampling, visual inspection, etc.).
Example: Market basket analysis

Data Set

- 1 month (30 days) of real-world POS transaction\(^1\) data from a typical local grocery outlet.
- Aggregated to product categories (e.g., “popcorn”).
- 9835 transactions with 169 different categories.

Goal of the store manager

- To obtain segment specific association rules to support promoting the product category “beef”.

\(^1\)The data set included in package \texttt{arules} under the name \texttt{Groceries}.
Example: Segmentation

Find subsets of the database which represent different types of shopping behavior (e.g., small baskets at lunch time and rather large baskets on Fridays)

```r
> library("arules")
> data("Groceries")

> s <- sample(Groceries, 2000)
> d <- dist(as(s, "matrix"), method = "binary")
```

For segmentation we use Partitioning Around Medoids (PAM) from package `cluster` (Maechler 2006) with \(k = 8 \).

```r
> library("cluster")
> labels <- pam(d, k = 8, cluster = TRUE)
```
Example: Segmentation (2)

Visual inspection with (re-ordered) dissimilarity matrix shading.

```r
> library("cba")
> clu <-
+  cluproxplot(d, 
+    labels)
```

(in package `cba` by Buchta & Hahsler (2006))
To predict labels for the whole data set based on the clustered sample, we use the nearest neighbor approach. Cross-distances are, e.g., implemented as the function `dists()` in package `cba`.

```r
> xd <- dists(as(Groceries, "matrix") == 1,
+             as(s, "matrix") == 1, method = "binary")
> allLabels <- labels[max.col(-xd)]
```

We use the labels for all transactions (`allLabels`) to generate the list C of transaction data sets, one for each cluster.

```r
> C <- split(Groceries, allLabels)
```
Example: Segmentation (4)

Inspect cluster profiles of two distinct clusters:

1. Cluster 8: Most compact cluster (highest avg. silhouette width)
2. Cluster 3: Largest average basket size

```r
> itemFrequencyPlot(C[[8]], population = s, support = 0.05)
> itemFrequencyPlot(C[[3]], population = s, support = 0.05)
```
Example: Mining Association Rules

We mine association rules from the transactions in cluster 8 with a minimum support of 0.5% and a minimum confidence of 20%.

```r
> rules <- apriori(C[[8]], parameter = list(support = 0.005, +    confidence = 0.2), control = list(verbose = FALSE))
> rules

set of 13255 rules

In a second step, we find the rules which have the product category “beef” in the right-hand-side (equivalent to rule template \( * \Rightarrow \{\text{beef}\} \)).

```r
> beefRules <- subset(rules, subset = rhs %in% "beef")
> beefRules

set of 268 rules
The store manager can now analyze the found 268 rules. As an example, we show the 3 rules with the highest confidence values.

```r
> inspect(head(SORT(beefRules, by = "confidence"), n = 3))
```

<table>
<thead>
<tr>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>{sausage, root vegetables, butter}</td>
<td>{beef}</td>
<td>0.005411</td>
<td>0.6250</td>
<td>3.438</td>
</tr>
<tr>
<td>{pork, berries}</td>
<td>{beef}</td>
<td>0.005411</td>
<td>0.5263</td>
<td>2.895</td>
</tr>
<tr>
<td>{root vegetables, whole milk, butter, rolls/buns}</td>
<td>{beef}</td>
<td>0.005952</td>
<td>0.5238</td>
<td>2.881</td>
</tr>
</tbody>
</table>
Conclusion

The main properties of the flexible arules infrastructure are:

- Efficient storage of transaction data and associations in sparse matrix representation.
- A rich set of functions for analyzing and manipulation transaction data and associations.
- Interfaces to fast mining algorithms (Apriori, Eclat).
- Extensible class structure (e.g., for adding new types of associations).

The arules infrastructure provides the foundation for new applications. For example,

- computations with sets of associations,
- clustering itemsets or rules (Strehl et al., 1999),
- experiments with probabilistic models of transaction data (mixture models; Cadez et al. 2001).