Probabilistic Approach to Association Rule Mining

Michael Hahsler

Intelligent Data Analysis Lab (IDA@SMU)
Department of Engineering Management, Information, and Systems, SMU
mhahsler@lyle.smu.edu

Department of Statistics & Actuarial Science
University of Waterloo
October, 2018
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motivation</td>
</tr>
<tr>
<td>2. Transaction Data</td>
</tr>
<tr>
<td>3. Introduction to Association Rules</td>
</tr>
<tr>
<td>4. Probabilistic Interpretation, Weaknesses and Enhancements</td>
</tr>
<tr>
<td>5. A Probabilistic Independence Model</td>
</tr>
<tr>
<td>- Application: Evaluate Quality Measures</td>
</tr>
<tr>
<td>- Application: NB-Frequent Itemsets</td>
</tr>
<tr>
<td>- Application: Hyper-Confidence</td>
</tr>
<tr>
<td>6. Conclusion</td>
</tr>
<tr>
<td>7. Appendix: The arules Infrastructure</td>
</tr>
</tbody>
</table>
Motivation

We live in the era of big data. Examples:

- **Retail data**: POS systems, loyalty cards, credit cards and e-commerce.
- **Web navigation data**: Web analytics, search engines, Wikis, etc.
- **Social media data**: Facebook, Google+, Instagram, LinkedIn, Pinterest, Snapchat, Tumblr, Twitter, etc.
- **Internet of Things**: Mobile phones, vehicles, home appliances, etc.
- **Biological data**: Electronic health records, gene expression data, etc.
Motivation

We live in the era of big data. Examples:

- **Retail data**: POS systems, loyalty cards, credit cards and e-commerce.
- **Web navigation data**: Web analytics, search engines, Wikis, etc.
- **Social media data**: Facebook, Google+, Instagram, LinkedIn, Pinterest, Snapchat, Tumblr, Twitter, etc.
- **Internet of Things**: Mobile phones, vehicles, home appliances, etc.
- **Biological data**: Electronic health records, gene expression data, etc.

Typical size of data sets:

- **Typical Retailer**: 10–500 product groups and 500–10,000 products
- **Amazon**: 560+ million products in the US (2018)
- **Wikipedia**: almost 5.7+ million articles (2018)
- **Google**: estimated 47+ billion pages in index (2015)
- **Human Genome Project**: approx. 20,000–25,000 genes in human DNA with 3 billion base pairs.

- Typically 10,000–10 million transactions (shopping baskets, user sessions, observations, patients, etc.)
Motivation

The aim of association analysis is to find ‘interesting’ relationships between items (products, documents, etc.). Example: ‘purchase relationship’:

- milk, flour and eggs are frequently bought together.
- or
- If someone purchases milk and flour then that person often also purchases eggs.

Applications of found relationships:
- Retail: Product placement, promotion campaigns, product assortment decisions, etc. → exploratory market basket analysis (Russell et al., 1997; Berry and Linoff, 1997; Schnedlitz et al., 2001; Reutterer et al., 2007).
- E-commerce, digital libraries, search engines: Personalization, mass customization → recommender systems, item-based collaborative filtering (Sarwar et al., 2001; Linden et al., 2003; Geyer-Schulz and Hahsler, 2003).
Motivation

The aim of association analysis is to find ‘interesting’ relationships between items (products, documents, etc.). Example: ‘purchase relationship’:

milk, flour and eggs are frequently bought together.

or

If someone purchases milk and flour then that person often also purchases eggs.

Applications of found relationships:

- Retail: Product placement, promotion campaigns, product assortment decisions, etc.
 → exploratory market basket analysis (Russell et al., 1997; Berry and Linoff, 1997; Schnedlitz et al., 2001; Reutterer et al., 2007).

- E-commerce, dig. libraries, search engines: Personalization, mass customization
 → recommender systems, item-based collaborative filtering (Sarwar et al., 2001; Linden et al., 2003; Geyer-Schulz and Hahsler, 2003).
Table of Contents

1. Motivation

2. Transaction Data

3. Introduction to Association Rules

4. Probabilistic Interpretation, Weaknesses and Enhancements

5. A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence

6. Conclusion

7. Appendix: The *arules* Infrastructure
Transaction Data

Example of market basket data:

<table>
<thead>
<tr>
<th>transaction ID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>milk, bread</td>
</tr>
<tr>
<td>2</td>
<td>bread, butter</td>
</tr>
<tr>
<td>3</td>
<td>beer</td>
</tr>
<tr>
<td>4</td>
<td>milk, bread, butter</td>
</tr>
<tr>
<td>5</td>
<td>bread, butter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>transactions</th>
<th>milk</th>
<th>bread</th>
<th>butter</th>
<th>beer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Formally, let $I = \{i_1, i_2, \ldots, i_n\}$ be a set of n binary attributes called items. Let $D = \{t_1, t_2, \ldots, t_m\}$ be a set of transactions called the database. Each transaction in D has an unique transaction ID and contains a subset of the items in I.

Note: Non-transaction data can be made into transaction data using binarization.
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements

5 A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence

6 Conclusion

7 Appendix: The arules Infrastructure
Association Rules

A rule takes the form $X \rightarrow Y$

- $X, Y \subseteq I$
- $X \cap Y = \emptyset$
- X and Y are called itemsets.
- X is the rule’s antecedent (left-hand side)
- Y is the rule’s consequent (right-hand side)

Example

$\{\text{milk, flower, bread}\} \rightarrow \{\text{eggs}\}$
Association Rules

To select ‘interesting’ association rules from the set of all possible rules, two measures are used (Agrawal et al., 1993):

1. **Support** of an itemset Z is defined as $\text{supp}(Z) = \frac{n_Z}{n}$.
 → share of transactions in the database that contains Z.

2. **Confidence** of a rule $X \rightarrow Y$ is defined as
 $\text{conf}(X \rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)}$
 → share of transactions containing Y in all the transactions containing X.
Association Rules

To select ‘interesting’ association rules from the set of all possible rules, two measures are used (Agrawal et al., 1993):

1. **Support** of an itemset \(Z \) is defined as \(\text{supp}(Z) = \frac{n_Z}{n} \).
 \(\rightarrow \) share of transactions in the database that contains \(Z \).

2. **Confidence** of a rule \(X \rightarrow Y \) is defined as
 \[\text{conf}(X \rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)} \]
 \(\rightarrow \) share of transactions containing \(Y \) in all the transactions containing \(X \).

Each association rule \(X \rightarrow Y \) has to satisfy the following restrictions:

\[\text{supp}(X \cup Y) \geq \sigma \]
\[\text{conf}(X \rightarrow Y) \geq \gamma \]

\(\rightarrow \) called the support-confidence framework.
Minimum Support

Idea: Set a user-defined threshold for support since more frequent itemsets are typically more important. E.g., frequently purchased products generally generate more revenue.

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>beer</th>
<th>eggs</th>
<th>flour</th>
<th>milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

'Basis for efficient algorithms (Apriori, Eclat).'
Minimum Support

Idea: Set a user-defined threshold for support since more frequent itemsets are typically more important. E.g., frequently purchased products generally generate more revenue.

Problem: For k items (products) we have $2^k - k - 1$ possible relationships between items. Example: $k = 100$ leads to more than 10^{30} possible associations.
Minimum Support

Idea: Set a user-defined threshold for support since more frequent itemsets are typically more important. E.g., frequently purchased products generally generate more revenue.

Problem: For \(k \) items (products) we have \(2^k - k - 1 \) possible relationships between items. Example: \(k = 100 \) leads to more than \(10^{30} \) possible associations.

Apriori property (Agrawal and Srikant, 1994): The support of an itemset cannot increase by adding an item. Example: \(\sigma = .4 \) (support count \(\geq 2 \))

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>beer</th>
<th>eggs</th>
<th>flour</th>
<th>milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

→ Basis for efficient algorithms (Apriori, Eclat).
Minimum Confidence

From the set of frequent itemsets all rules which satisfy the threshold for confidence
\[\text{conf}(X \rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)} \geq \gamma \]
are generated.

\begin{itemize}
 \item \{eggs\} \rightarrow \{flour\} \quad \text{Confidence} \quad \frac{3}{4} = 0.75
 \item \{flour\} \rightarrow \{eggs\} \quad \frac{3}{3} = 1
 \item \{eggs\} \rightarrow \{milk\} \quad \frac{2}{4} = 0.5
 \item \{milk\} \rightarrow \{eggs\} \quad \frac{2}{4} = 0.5
 \item \{flour\} \rightarrow \{milk\} \quad \frac{2}{3} = 0.67
 \item \{milk\} \rightarrow \{flour\} \quad \frac{2}{4} = 0.5
 \item \{eggs, flour\} \rightarrow \{milk\} \quad \frac{2}{3} = 0.67
 \item \{eggs, milk\} \rightarrow \{flour\} \quad \frac{2}{2} = 1
 \item \{flour, milk\} \rightarrow \{eggs\} \quad \frac{2}{2} = 1
 \item \{eggs\} \rightarrow \{flour, milk\} \quad \frac{2}{4} = 0.5
 \item \{flour\} \rightarrow \{eggs, milk\} \quad \frac{2}{3} = 0.67
 \item \{milk\} \rightarrow \{eggs, flour\} \quad \frac{2}{4} = 0.5
\end{itemize}
Minimum Confidence

From the set of frequent itemsets all rules which satisfy the threshold for confidence $\text{conf}(X \rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)} \geq \gamma$ are generated.

At $\gamma = 0.7$ the following set of rules is generated:

<table>
<thead>
<tr>
<th>Left Itemset</th>
<th>Right Itemset</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{eggs}</td>
<td>{flour}</td>
<td>3/5 = 0.6</td>
<td>3/4 = 0.75</td>
</tr>
<tr>
<td>{flour}</td>
<td>{eggs}</td>
<td>3/5 = 0.6</td>
<td>3/3 = 1</td>
</tr>
<tr>
<td>{eggs, milk}</td>
<td>{flour}</td>
<td>2/5 = 0.4</td>
<td>2/2 = 1</td>
</tr>
<tr>
<td>{flour, milk}</td>
<td>{eggs}</td>
<td>2/5 = 0.4</td>
<td>2/2 = 1</td>
</tr>
</tbody>
</table>
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements
 - A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence

5 Conclusion

6 Appendix: The arules Infrastructure
Probabilistic interpretation of Support and Confidence

Support

\[\text{supp}(Z) = \frac{n_Z}{n} \]

corresponds to an estimate for \(\hat{P}(E_Z) = \frac{n_Z}{n} \), the probability for the event that itemset \(Z \) is contained in a transaction.
Probabilistic interpretation of Support and Confidence

Support

$$\text{supp}(Z) = \frac{n_Z}{n}$$

corresponds to an estimate for $\hat{P}(E_Z) = \frac{n_Z}{n}$, the probability for the event that itemset Z is contained in a transaction.

Confidence can be interpreted as an estimate for the conditional probability

$$P(E_Y|E_X) = \frac{P(E_X \cap E_Y)}{P(E_X)}.$$

This directly follows the definition of confidence:

$$\text{conf}(X \rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)} = \frac{\hat{P}(E_X \cap E_Y)}{\hat{P}(E_X)}.$$
Weaknesses of Support and Confidence

- Support suffers from the ‘rare item problem’ (Liu et al., 1999a): Infrequent items not meeting minimum support are ignored which is problematic if rare items are important. E.g. rarely sold products which account for a large part of revenue or profit. Typical support distribution (retail point-of-sale data with 169 items):

<table>
<thead>
<tr>
<th>Support</th>
<th>Number of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>0.10</td>
<td>40</td>
</tr>
<tr>
<td>0.15</td>
<td>60</td>
</tr>
<tr>
<td>0.20</td>
<td>80</td>
</tr>
</tbody>
</table>

Weaknesses of Support and Confidence

- Confidence ignores the frequency of Y (Aggarwal and Yu, 1998; Silverstein et al., 1998).

<table>
<thead>
<tr>
<th></th>
<th>X=0</th>
<th>X=1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=0</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Y=1</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Σ</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

$$\text{conf}(X \rightarrow Y) = \frac{n_{X \cup Y}}{n_X} = \frac{20}{25} = .8$$

Weakness: Confidence of the rule is relatively high with $\hat{P}(E_Y | E_X) = .8$. But the unconditional probability $\hat{P}(E_Y) = n_Y / n = 90/100 = .9$ is higher!
Weaknesses of Support and Confidence

- Confidence ignores the frequency of Y (Aggarwal and Yu, 1998; Silverstein et al., 1998).

<table>
<thead>
<tr>
<th></th>
<th>X=0</th>
<th>X=1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=0</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Y=1</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Σ</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

$$\text{conf}(X \rightarrow Y) = \frac{n_{X \cup Y}}{n_X} = \frac{20}{25} = .8$$

Weakness: Confidence of the rule is relatively high with $\hat{P}(E_Y | E_X) = .8$. But the unconditional probability $\hat{P}(E_Y) = n_Y / n = 90/100 = .9$ is higher!

- The thresholds for support and confidence are user-defined.
 In practice, the values are chosen to produce a ‘manageable’ number of frequent itemsets or rules.

→ What is the risk and cost attached to using spurious rules or missing important in an application?
The measure lift (interest, Brin et al., 1997) is defined as

\[
\text{lift}(X \rightarrow Y) = \frac{\text{conf}(X \rightarrow Y)}{\text{supp}(Y)} = \frac{\text{supp}(X \cup Y)}{\text{supp}(X) \cdot \text{supp}(Y)}
\]

and can be interpreted as an estimate for \(P(E_X \cap E_Y) / (P(E_X) \cdot P(E_Y)) \).

Measure for the deviation from stochastic independence:

\[
P(E_X \cap E_Y) = P(E_X) \cdot P(E_Y)
\]
The measure **lift** (interest, Brin *et al.*, 1997) is defined as

\[
\text{lift}(X \rightarrow Y) = \frac{\text{conf}(X \rightarrow Y)}{\text{supp}(Y)} = \frac{\text{supp}(X \cup Y)}{\text{supp}(X) \cdot \text{supp}(Y)}
\]

and can be interpreted as an estimate for \(P(E_X \cap E_Y)/(P(E_X) \cdot P(E_Y)) \).

→ Measure for the **deviation from stochastic independence**:

\[
P(E_X \cap E_Y) = P(E_X) \cdot P(E_Y)
\]

In marketing values of lift are interpreted as:

- lift\((X \rightarrow Y) = 1 \ldots X \text{ and } Y \text{ are independent}
- lift\((X \rightarrow Y) > 1 \ldots \text{complementary effects between } X \text{ and } Y
- lift\((X \rightarrow Y) < 1 \ldots \text{substitution effects between } X \text{ and } Y
The measure \textit{lift} (interest, Brin \textit{et al.}, 1997) is defined as

$$\text{lift}(X \rightarrow Y) = \frac{\text{conf}(X \rightarrow Y)}{\text{supp}(Y)} = \frac{\text{supp}(X \cup Y)}{\text{supp}(X) \cdot \text{supp}(Y)}$$

and can be interpreted as an estimate for $P(E_X \cap E_Y)/(P(E_X) \cdot P(E_Y))$.

→ Measure for the deviation from stochastic independence:

$$P(E_X \cap E_Y) = P(E_X) \cdot P(E_Y)$$

In marketing values of lift are interpreted as:

- lift($X \rightarrow Y$) = 1 ... X and Y are independent
- lift($X \rightarrow Y$) > 1 ... complementary effects between X and Y
- lift($X \rightarrow Y$) < 1 ... substitution effects between X and Y

Example

<table>
<thead>
<tr>
<th></th>
<th>$X=0$</th>
<th>$X=1$</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=0$</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>$Y=1$</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Σ</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

\[
\text{lift}(X \rightarrow Y) = \frac{.2}{.25 \cdot .9} = .89
\]

Weakness: small counts!
Chi-Square Test for Independence

Tests for significant deviations from stochastic independence (Silverstein et al., 1998; Liu et al., 1999b).

Example: 2×2 contingency table ($l = 2$ dimensions) for rule $X \rightarrow Y$.

<table>
<thead>
<tr>
<th></th>
<th>$X=0$</th>
<th>$X=1$</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=0$</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>$Y=1$</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Σ</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Null hypothesis: $P(E_X \cap E_Y) = P(E_X) \cdot P(E_Y)$ with test statistic

$$X^2 = \sum \sum \frac{(n_{ij} - E(n_{ij}))^2}{E(n_{ij})}$$

with $E(n_{ij}) = \frac{n_i \cdot n_j}{n}$

asymptotically approaches a χ^2 distribution with $2^l - l - 1$ degrees of freedom.

The result of the test for the contingency table above:

$X^2 = 3.7037$, df = 1, p-value = 0.05429

→ The null hypothesis (independence) can not be be rejected at $\alpha = 0.05$.

Weakness: Bad approximation for $E(n_{ij}) < 5$; multiple testing.
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements

5 A Probabilistic Independence Model
 • Application: Evaluate Quality Measures
 • Application: NB-Frequent Itemsets
 • Application: Hyper-Confidence

6 Conclusion

7 Appendix: The arules Infrastructure
Transactions occur following a homogeneous Poisson process with parameter θ (intensity).

$$P(N = n) = \frac{e^{-\theta t}(\theta t)^n}{n!}$$
The Independence Model

1. Transactions occur following a homogeneous Poisson process with parameter θ (intensity).

$$P(N = n) = \frac{e^{-\theta t} (\theta t)^n}{n!}$$

2. Each item has the occurrence probability p_i and each transaction is the result of k (number of items) independent Bernoulli trials.

$$P(N_i = n_i) = \sum_{m=n_i}^{\infty} P(N_i = n_i|N = n) \cdot P(N = n) = \frac{e^{-\lambda_i} \lambda_i^{n_i}}{n_i!} \quad \text{with} \quad \lambda_i = p_i \theta t$$

<table>
<thead>
<tr>
<th>p</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>...</th>
<th>i_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0.0250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tr_1	0	1	0	...	1
Tr_2	0	1	0	...	1
Tr_3	0	1	0	...	0
Tr_4	0	0	0	...	0
...					
Tr_{n-1}	1	0	0	...	1
Tr_n	0	0	1	...	1

| n_i | 99 | 201 | 7 | ... | 411 |

Michael Hahsler (IDA@SMU)
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements

5 A Probabilistic Independence Model
 • Application: Evaluate Quality Measures
 • Application: NB-Frequent Itemsets
 • Application: Hyper-Confidence

6 Conclusion

7 Appendix: The arules Infrastructure
Application: Evaluate Quality Measures

Authors typically construct examples where support, confidence and lift have problems (see e.g., Brin et al., 1997; Aggarwal and Yu, 1998; Silverstein et al., 1998).

Idea: Compare the behavior of measures on real-world data and on data simulated using the independence model (Hahsler et al., 2006; Hahsler and Hornik, 2007).
Application: Evaluate Quality Measures

Authors typically construct examples where support, confidence and lift have problems (see e.g., Brin et al., 1997; Aggarwal and Yu, 1998; Silverstein et al., 1998).

Idea: Compare the behavior of measures on real-world data and on data simulated using the independence model (Hahsler et al., 2006; Hahsler and Hornik, 2007).

Characteristics of used data set (typical retail data set).

- \(t = 30 \) days
- \(k = 169 \) product groups
- \(n = 9835 \) transactions
- Estimated \(\theta = n/t = 327.2 \) transactions per day.
- We estimate \(p_i \) using the observed frequencies \(n_i/n \).
Comparison: Support

Simulated data

Only rules of the form: \{i_i\} \rightarrow \{i_j\}

X-axis: Items \(i_i\) sorted by decreasing support.

Y-axis: Items \(i_j\) sorted by decreasing support.

Retail data
Comparison: Confidence

Simulated data

\[
\text{Retail data}
\]

\[
\text{conf} \left(\{i_i\} \rightarrow \{i_j\} \right) = \frac{\text{supp}(\{i_i, i_j\})}{\text{supp}(\{i_i\})}
\]
Comparison: Lift

Simulated data

\[\text{lift}(\{i_i\} \rightarrow \{i_j\}) = \frac{\text{supp}(\{i_i, i_j\})}{\text{supp}(\{i_i\}) \cdot \text{supp}(\{i_j\})} \]

Retail data
Comparison: Lift + Minimum Support

Simulated data
(min. support: $\sigma = .1\%$)

- Considerably higher lift values in retail data (indicate the existence of associations).

Retail data
(min. support: $\sigma = .1\%$)
Application: NB-Frequent Itemsets

Idea: Identification of interesting associations as deviations from the independence model (Hahsler, 2006).

1. Estimation of a **global independence model** using the frequencies of items in the database.
 The independence model is a mixture of k (number of items) independent homogeneous Poisson processes. Parameters λ_i in the population are chosen from a Γ distribution.

 ![Global model graph]

 Number of items which occur in $r = \{0, 1, \ldots, r_{max}\}$ transactions \rightarrow **Negative binomial distribution**.
NB-Frequent Itemsets

2. Select all transactions for itemset Z. We expect all items which are independent of Z to occur in the selected transactions following the (rescaled) global independence model. Associated items co-occur too frequently with Z.

- Rescaling of the model for Z by the number of incidences.
- Uses a user-defined threshold $1 - \pi$ for the number of accepted 'spurious associations'.
- Restriction of the search space by recursive definition of parameter θ.

Details about the estimation procedure for the global model (EM), the mining algorithm and evaluation of effectiveness can be found in Hahsler (2006).
NB-Frequent Itemsets

Mine NB-frequent itemsets from an artificial data set with known patterns.

- Performs better than support in filtering spurious itemsets.
- Automatically decreases the required support with itemset size.
Table of Contents

1 Motivation
2 Transaction Data
3 Introduction to Association Rules
4 Probabilistic Interpretation, Weaknesses and Enhancements
5 A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence
6 Conclusion
7 Appendix: The arules Infrastructure
Hyper-Confidence

Idea: Develop a confidence-like measure based on the probabilistic model (Hahsler and Hornik, 2007).

Informally: How confident, 0–100%, are we that a rule is not just the result of random co-occurrences?
Hyper-Confidence

Idea: Develop a confidence-like measure based on the probabilistic model (Hahsler and Hornik, 2007).

Informally: How confident, 0–100%, are we that a rule is not just the result of random co-occurrences?

Model the number of transactions which contain rule $X \rightarrow Y$ ($X \cup Y$) as a random variable N_{XY}. Give the frequencies n_X and n_Y and independence, N_{XY} has a hypergeometric distribution.

The hypergeometric distribution arises for the ‘urn problem’: An urn contains w white and b black balls. k balls are randomly drawn from the urn without replacement. The number of white balls drawn is then a hypergeometric distributed random variable.
Hyper-Confidence

The hypergeometric distribution arises for the ‘urn problem’: An urn contains w white and b black balls. k balls are randomly drawn from the urn without replacement. The number of white balls drawn is then a hypergeometric distributed random variable.

Application: Under independence, the database can be seen as an urn with n_X ‘white’ transactions (contain X) and $n - n_X$ ‘black’ transactions (do not contain X). We randomly assign Y to n_Y transactions in the database. The number of transactions that contain Y and X is a hypergeometric distributed random variable.

The probability that X and Y co-occur in exactly r transactions given independence, n, n_X and n_Y, is

$$P(N_{XY} = r) = \frac{\binom{n_Y}{r} \binom{n-n_Y}{n_X-r}}{\binom{n}{n_X}}.$$
Hyper-Confidence

\[
\text{hyper-confidence}(X \rightarrow Y) = P(N_{XY} < n_{XY}) = \sum_{i=0}^{n_{XY}-1} P(N_{XY} = i)
\]

A hyper-confidence value close to 1 indicates that the observed frequency \(n_{XY}\) is too high for the assumption of independence and that between \(X\) and \(Y\) exists a complementary effect.

As for other measures of association, we can use a threshold:

\[
\text{hyper-confidence}(X \rightarrow Y) \geq \gamma
\]

Interpretation: At \(\gamma = .99\) each accepted rule has a chance of less than 1% that the large value of \(n_{XY}\) is just a random deviation (given \(n_X\) and \(n_Y\)).
Using minimum hyper-confidence (γ) is equivalent to Fisher’s exact test.

Fisher’s exact test is a permutation test that calculates the probability of observing an even more extreme value for given fixed marginal frequencies (one-tailed test). Fisher showed that the probability of a certain configuration follows a hypergeometric distribution.

The p-value of Fisher’s exact test is

\[p\text{-value} = 1 - \text{hyper-confidence}(X \rightarrow Y) \]

and the significance level is $\alpha = 1 - \gamma$.

<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>$n - n_Y - n_X - N_{XY}$</td>
<td>$n_X - N_{XY}$</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>$n_Y - N_{XY}$</td>
<td>N_{XY}</td>
</tr>
<tr>
<td></td>
<td>$n - n_X$</td>
<td>n_X</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>
Hyper-Confidence: Complementary Effects

Simulated data

\[\gamma = .99 \]

Retail data

Expected spurious rules: \(\alpha\left(\frac{k}{2}\right) = 141.98 \)
Hyper-Confidence: Complementary Effects

Simulated data

Retail data

\[\gamma = .9999993 \]

Bonferroni correction

\[\alpha = \frac{\alpha_i}{k} \]
Hyper-Confidence: Substitution Effects

Hyper-confidence uncovers complementary effects between items. To find substitution effects we have to adapt hyper-confidence as follows:

\[
\text{hyper-confidence}^{\text{sub}}(X \rightarrow Y) = P(N_{XY} > n_{X,Y}) = 1 - \sum_{i=0}^{n_{XY}} P(N_{XY} = i)
\]

with

\[
\text{hyper-confidence}^{\text{sub}}(X \rightarrow Y) \geq \gamma
\]
Hyper-Confidence: Substitution Effects

Simulated data

Retail data

$\gamma = .99$
Hyper-Confidence: Simulated Data

PN-Graph for the synthetic data set \(T10I4D100K \) with a corruption rate of .9 (Agrawal and Srikant, 1994).
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements

5 A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence

6 Conclusion

7 Appendix: The arules Infrastructure
The support-confidence framework cannot answer some important questions sufficiently:

- What are sensible thresholds for different applications?
- What is the risk of accepting spurious rules?
Conclusion

The support-confidence framework cannot answer some important questions sufficiently:

- What are sensible thresholds for different applications?
- What is the risk of accepting spurious rules?

Probabilistic models can help to:

- Evaluate and compare measures of interestingness, data mining processes or complete data mining systems (with synthetic data from models with dependencies).
- Develop new mining strategies and measures (e.g., NB-frequent itemsets, hyper-confidence).
- Use statistical test theory as a solid basis to quantify risk and justify thresholds.
Thank you for your attention!

- Contact information and full papers can be found at http://michael.hahsler.net
- The presented models and measures are implemented in arules (an extension package for R, a free software environment for statistical computing and graphics; see http://www.r-project.org/).
Table of Contents

1 Motivation

2 Transaction Data

3 Introduction to Association Rules

4 Probabilistic Interpretation, Weaknesses and Enhancements

5 A Probabilistic Independence Model
 - Application: Evaluate Quality Measures
 - Application: NB-Frequent Itemsets
 - Application: Hyper-Confidence

6 Conclusion

7 Appendix: The arules Infrastructure
The arules Infrastructure

Simplified UML class diagram implemented in R (S4)

- Uses the sparse matrix representation (from package `Matrix` by Bates & Maechler (2005)) for transactions and associations.
- **Abstract associations class** for extensibility.
- Interfaces for Apriori and Eclat (implemented by Borgelt (2003)) to mine association rules and frequent itemsets.
- Provides comprehensive analysis and manipulation capabilities for transactions and associations (subsetting, sampling, visual inspection, etc.).
- `arulesViz` provides visualizations.
Simple Example

R> library("arules")
R> data("Groceries")

R> Groceries
transactions in sparse format with
 9835 transactions (rows) and
 169 items (columns)

R> rules <- apriori(Groceries, parameter = list(support = .001))
Simple Example

R> rules
set of 410 rules

R> inspect(head(sort(rules, by = "lift"), 3))

lhs rhs support confidence lift
1 {liquor,
 red/blush wine} => {bottled beer} 0.001931876 0.9047619 11.23527
2 {citrus fruit,
 other vegetables,
 soda,
 fruit} => {root vegetables} 0.001016777 0.9090909 8.34040
3 {tropical fruit,
 other vegetables,
 whole milk,
 yogurt,
 oil} => {root vegetables} 0.001016777 0.9090909 8.34040

