Advanced Scientific Computing with R
4. Plots

Michael Hahsler
Southern Methodist University
February 16, 2014

These slides are largely based on “An Introduction to R”
http://CRAN.R-Project.org/
Table of Contents

1 Simple Plots

2 High-level Graphics Functions

3 Low-level Graphics Functions

4 Exercises
Introduction

- Ploting is an integral part of R.
- R plots on devices (e.g., X11(), quartz(), windows(), pdf(), png())
- Plotting commands are divided into three basic groups:
 - **High-level plotting functions** create a new plot on the graphics device, possibly with axes, labels, titles and so on.
 - **Low-level plotting functions** add more information to an existing plot, such as extra points, lines and labels.
 - **Interactive graphics functions** allow you interactively add information to, or extract information from, an existing plot, using a pointing device such as a mouse.

We will only discuss ‘base’ graphics. An advanced graphics sub-system called ‘grid’ also exists.
Table of Contents

1 Simple Plots

2 High-level Graphics Functions

3 Low-level Graphics Functions

4 Exercises
R> plot(1:10)
R> plot(1:10, type="l", col="red", lwd=3)
R> abline(v=5, lty=2)
Getting help for plot

```r
?? plot
```
Shows that plot is a so called generic function. Generic functions have implementations for different data types which get "dispatched" at call-time.

```r
?? plot.default
This is the default function for plot.
```

```r
?? par
Graphical parameters which typically can be passed on as . . . to plot.
```
Scatterplot

R> plot(x=rnorm(500), y=rnorm(500), xlab="x", ylab="y",
+ main="Bi-variate Norm. Distr.")
Scatterplot matrix (pairs)

R> data(iris)
R> head(iris, n=1)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 5.1 3.5 1.4 0.2 setosa
R> plot(iris[, -5], col = iris[, 5])
```r
R> hist(iris$Sepal.Length, breaks=20)
```

Histogram of iris$Sepal.Length

![Histogram of iris$Sepal.Length](image)
hist - Histogram with estimated density

R> hist(iris$Sepal.Length, breaks=20, prob=TRUE)
R> lines(density(iris$Sepal.Length), col="red")
volcano is a R data set with elevation measurements of Maunga Whau on a 10m by 10m grid.

R> dim(volcano)
[1] 87 61
R> image(volcano)
R> contour(volcano)
R> persp(volcano)
Typical Arguments for plot functions

- `add=TRUE`: Add to an existing plot?
- `axes=FALSE`: Plot axes?
- `log="x", log="y" or log="xy"`: Log. axes?
- `type="l"`: Plot lines instead of points
- `xlab, ylab`: Axis labels
- `main`: Figure title
- `sub`: Sub-title
Table of Contents

1. Simple Plots

2. High-level Graphics Functions

3. Low-level Graphics Functions

4. Exercises
Some low-level functions

These functions can be used to add elements to a plot.

- `points(x, y)`
- `lines(x, y)`
- `text(x, y, labels, ...)`
- `abline(a, b) or abline(h=y) or abline(v=x)`
- `polygon(x, y, ...)`
- `legend(x, y, legend, ...)`
- `title(main, sub)`
- `axis(side, ...)"
Graphical parameter list: `par`

R maintains a list of graphics parameters to control line style, colors, figure arrangement and text justification. A separate list of graphics parameters is maintained for each active device.

```r
R> oldpar <- par(col=4, pch=4)
R> par(oldpar)
```

Many parameters from `par()` can also be passed to `plot()`. Try `par()` and `?par`
Important parameters in `par`

- `pch=4`: Plotting symbol (0-25)
- `lty=2`: Line type
- `lwd=2`: Line width
- `col=2`: Color for points, lines, etc.
- `cex=1.5`: Character expansion (e.g., 50% larger than default text size)
- `mai=c(1, 0.5, 0.5, 0)`: Widths of the bottom, left, top and right margins, respectively, measured in inches.
Saving a plot as an image

R> png(file="plot.png")
R> plot(1:10)
R> dev.off()
pdf
 2

Other devices are jpeg(), tiff(), pdf(), postscript(), win.metafile() (Windows).
Use ?Devices for a complete list.
Interactive and Advanced Graphics

Interactive Graphics are available via several extension packages:

- **ggplot2**: Grammar of graphics.
- **rggobi**: GGobi interactive graphics system.
- **iplots**: Java based plotting (alpha blending, brushing, selection, etc.)
- **playwith**: Build interactive versions of R graphics
- **rgl**: OpenGL

Advanced Graphics

- **ggplot2**: Grammar of graphics. Produces elegant visualizations (see http://ggplot2.org/).
- **grid**: Advanced graphics can be programmed using flexible low level plotting functions (viewports, different coordinate systems and units, lines, points, text, etc.) See also package **lattice**.
Table of Contents

1 Simple Plots

2 High-level Graphics Functions

3 Low-level Graphics Functions

4 Exercises
Exercises

1. Plot a $\sin(x)/x$. Hint: Trigonometric functions in R use angles in radians (see `sin`).

2. The “cars” data set gives the speed of cars and the distances taken to stop. Note that the data were recorded in the 1920s. Plot the “cars” data set as a scatter plot. Plot all data points with distances taken to stop greater than 80 in red.

3. Plot histograms for speed and dist in “cars”.