Regularization in Data Mining

Liang Ma
2019/02/27
Content

• Overfitting
• Regularization and some concepts
• Ridge Regression
• Lasso Regression
• R code for Ridge Regression and Lasso Regression
Overfitting

• An example to explain Overfitting
• The definition of overfitting
• How to address overfitting
Example: What is overfitting?

Underfitting or High Bias

Overfitting or High Variance
Definition

• Overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably".

------Wikipedia

• That is, if we have too many features in our data set, the learned hypothesis may fit the training set very well, but fail to generalize to new examples.
Example: What is overfitting?
How to address overfitting

Options:

• Collect more data
• Reduce number of features
• Regularization
Regularization

• The definition of regularization
• Some concepts we need to know
• ...
Definition

• Regularization is the process of adding information in order to solve an ill-posed problem or to prevent overfitting.

• That is, regularization is to reduce the complexity of the model by adjusting the model parameters to achieve the effect of avoiding overfitting.

------Wikipedia
Assume a linear equation is as follows:
\[\hat{h}_\theta = \theta_0 + \theta_1 x \]

And the cost function is:
\[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y^{(i)})^2 \]

The cost function is the mean square error function (MSE), where \(m \) represents the sample size.

Generalized linear regression cost function is:
\[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{h}_\theta (x^{(i)}) - y^{(i)})^2 \]
Linear regression models are often fitted using the least squares approach.

Least Squares:

"Least squares" means that the overall solution minimizes the sum of the squares of the residuals made in the results of every single equation.

------Wikipedia
the sum of the squares of the residuals

\[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{h}_\theta(x^{(i)}) - y^{(i)})^2 \]
Ridge Regression

...
In regularization, we usually use two algorithms, **Ridge Regression** and **Lasso Regression**.

Regularization is achieved by adding different constraints to the parameter after the cost function of linear regression. (here I take linear regression as an example.)
\[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{h}_{\theta}(x^{(i)}) - y^{(i)})^2 \]
\[j(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \]
\[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{h}_\theta(x^{(i)}) - y^{(i)})^2 \]
Linear Regression using least Squares minimizes the sum of the squares of the residuals

Regularization using Ridge Regression minimizes the sum of the squares of the residuals

\[y = \text{slope}^2 + \lambda \text{the slope}^2 \]

\[y = \text{slope} \times x + \text{y-axis intercept} \]
If you want to know more about the Cross Validation, I recommend:

Ridge Regression can solve complication models as well.

\[y = y\text{-axis intercept} + \text{slope}_1 x_1 + \text{slope}_2 x_2 + \text{slope}_3 x_3 + \ldots + \text{slope}_n x_n \]

The Ridge Regression Penalty =

\[\lambda \times (\text{slope}_1^2 + \text{slope}_2^2 + \text{slope}_3^2 + \ldots + \text{slope}_n^2) \]
Ridge Regression can also be applied to Logistic Regression.

The cost function of Logistic Regression:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_\theta(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_\theta(x^{(i)}))$$

Logistic Regression is solved using Maximum Likelihood.

So, regularization using Ridge Regression optimizes the sum of the likelihoods instead of the squares of the residuals

$$+ \lambda \text{the slope}^2$$
If you want to know more about the Linear Regression and Logistic Regression, I recommend:

1. Regression Methods, https://newonlinecourses.science.psu.edu/stat501/node/250/

2. Linear Regression With R - R-statistics.co, http://r-statistics.co/Linear-Regression.html

4. Lecture 2.1 — Linear Regression With One Variable | Model Representation — Andrew Ng, https://www.youtube.com/watch?v=kHwlB_j7Hkc&index=4&list=PLLssT5z_DsK-h9vYZkQkYNWcItpqhlRJLN
More about Ridge Regression

\[y = y\text{-axis intercept} + \text{slope}_1 x_1 + \text{slope}_2 x_2 + \text{slope}_3 x_3 + \ldots + \text{slope}_n x_n \]

The Ridge Regression Penalty =

\[\lambda (\text{slope}_1^2 + \text{slope}_2^2 + \text{slope}_3^2 + \ldots + \text{slope}_n^2) \]

For least Squares, we need at least \(n \) points to determine what the equation is.

When \(n \) becomes bigger and bigger, we need more and more points.

Ridge Regression can find a solution with Cross Validation and Ridge Regression Penalty.
Lasso Regression
In regularization, we usually use two algorithms, **Ridge Regression** and **Lasso Regression**.

Regularization is achieved by adding different constraints to the parameter after the cost function.
In **Ridge Regression**, we minimized the sum of the squares of the residuals

\[+ \lambda \text{the } \text{slope}^2 \]

Ridge Regression Penalty

In **Lasso Regression**, we minimized the sum of the squares of the residuals

\[+ \lambda \text{the } \vert \text{slope} \vert \]

Lasso Regression Penalty
Lasso Regression can solve complication models as well.

\[y = y\text{-axis intercept} + \text{slope}_1 x_1 + \text{slope}_2 x_2 + \text{slope}_3 x_3 + \ldots + \text{slope}_n x_n \]

The Lasso Regression Penalty =

\[\lambda \left(|\text{slope}_1| + |\text{slope}_2| + |\text{slope}_3| + \ldots + |\text{slope}_n| \right) \]
Lasso Regression can also be applied to Logistic Regression.

The cost function of Logistic Regression:

\[
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_\theta(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_\theta(x^{(i)}))
\]

Logistic Regression is solved using Maximum Likelihood.

So, regularization using Lasso Regression optimizes the sum of the likelihoods instead of the squares of the residuals:

\[+ \lambda^* | \text{the slope} |\]
In Lasso Regression, we can increase the λ. As λ increases, the slope of the results line gets smaller until the slope =0.

The difference between Ridge and Lasso Regression is that Ridge Regression can only make the slope asymptotically close to 0 while Lasso Regression can make the slope =0.

$$y = y\text{-axis intercept} + \text{slope}_1 \times x_1 + \text{slope}_2 \times x_2 + \text{slope}_3 \times x_3 + \ldots + \text{slope}_n \times x_n$$
Ridge Regression can do better in the data set when most variables are useful.

Lasso Regression can do better when the data set contains lots of useless variables.
Elastic-Net Regression

the sum of the squares of the residuals

\[+ \lambda_1 (|\text{slope}_1| + |\text{slope}_2| + |\text{slope}_3| + \ldots + |\text{slope}_n|) \]

\[+ \lambda_2 (\text{slope}_1^2 + \text{slope}_2^2 + \text{slope}_3^2 + \ldots + \text{slope}_n^2) \]
R code for Ridge Regression and Lasso Regression

Let’s coding!
To do Ridge, Lasso and Elastic-Net Regression in R, we will use the glmnet library.

the sum of the squares of the residuals

\[+ \lambda \times [\alpha \times (|\text{slope}_1| + |\text{slope}_2| + |\text{slope}_3| + \ldots + |\text{slope}_n|) \\
+ (1-\alpha) \times (\text{slope}_1^2 + \text{slope}_2^2 + \text{slope}_3^2 + \ldots + \text{slope}_n^2)] \]
If you want to know more about Regularization, I recommend:

- Regularization Part 1: Ridge Regression, https://www.youtube.com/watch?v=Q81RR3yKn30&list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF&index=37 ----- StatQuest

- Lecture 7.1 — Regularization | The Problem Of Overfitting — [Machine Learning | Andrew Ng], https://www.youtube.com/watch?v=u73PU6QwlI ----- Andrew Ng
Reference

• Regularization Part 1: Ridge Regression, https://www.youtube.com/watch?v=Q81RR3yKn30&list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF&index=37

• Regularization Part 2: Lasso Regression, https://www.youtube.com/watch?v=NGf0voTMIcs&index=9&list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF

• Regularization Part 3: Elastic Net Regression, https://www.youtube.com/watch?v=1dKRdX9bfIo&index=10&list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF

• Ridge, Lasso and Elastic-Net Regression in R, https://www.youtube.com/watch?v=ctmNq7FgbvI&list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF&index=11
Reference

- Lecture 7.1 — Regularization | The Problem Of Overfitting — [Machine Learning | Andrew Ng], https://www.youtube.com/watch?v=u73PU6Qwl1I

- Lecture 7.2 — Regularization | Cost Function — [Machine Learning | Andrew Ng | Stanford University], https://www.youtube.com/watch?v=KvtGD37Rm5I&index=41&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN&t=0s

- Lecture 7.3 — Regularization | Regularized Linear Regression — [Machine Learning | Andrew Ng], https://www.youtube.com/watch?v=qbvRdrd0yJ8&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN&index=41

- Lecture 7.4 — Regularization | Regularized Logistic Regression — [Machine Learning | Andrew Ng], https://www.youtube.com/watch?v=IXPgm1e0IOo&index=42&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
Reference

• Regularization (mathematics), https://en.wikipedia.org/wiki/Regularization_(mathematics)
• Linear regression, https://en.wikipedia.org/wiki/Linear_regression
• Least squares, https://en.wikipedia.org/wiki/Least_squares
• Logistic regression, https://en.wikipedia.org/wiki/Logistic_regression
Thank you very much!