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Which machine learning method to choose

Is there a learning method that is optimal for all text classification
problems?

No, because there is a tradeoff between bias and variance.

Factors to take into account:
I How much training data is available?
I How simple/complex is the problem? (linear vs. nonlinear decision

boundary)
I How noisy is the problem?
I How stable is the problem over time?

F For an unstable problem, it’s better to use a simple and robust
classifier.
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What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Evaluation of clustering

How many clusters?
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Clustering: Definition

(Document) clustering is the process of grouping a set of documents
into clusters of similar documents.

Documents within a cluster should be similar.

Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.
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Exercise: Data set with clear cluster structure
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Classification vs. Clustering

Classification: supervised learning

Clustering: unsupervised learning

Classification: Classes are human-defined and part of the input to the
learning algorithm.

Clustering: Clusters are inferred from the data without human input.
I However, there are many ways of influencing the outcome of clustering:

number of clusters, similarity measure, representation of documents,
. . .
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The cluster hypothesis

Cluster hypothesis. Documents in the same cluster behave similarly with
respect to relevance to information needs.

All applications of clustering in IR are based (directly or indirectly) on the
cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated documents
tend to be relevant to the same requests”.
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Applications of clustering in IR

application what is benefit
clustered?

search result clustering search
results

more effective infor-
mation presentation
to user

Scatter-Gather (subsets of)
collection

alternative user inter-
face: “search without
typing”

collection clustering collection effective information
presentation for ex-
ploratory browsing

cluster-based retrieval collection higher efficiency:
faster search
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Search result clustering for better navigation
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Scatter-Gather
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Global navigation: Yahoo
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Global navigation: MESH (upper level)
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Global navigation: MESH (lower level)
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Navigational hierarchies: Manual vs. automatic creation

Note: Yahoo/MESH are not examples of clustering.

But they are well known examples for using a global hierarchy for
navigation.

Some examples for global navigation/exploration based on clustering:
I Cartia
I Themescapes
I Google News
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Global navigation combined with visualization (1)
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Global navigation combined with visualization (2)
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Global clustering for navigation: Google News

http://news.google.com

Hahsler (SMU) CSE 7/5337 Spring 2012 20 / 55



Clustering for improving recall

To improve search recall:
I Cluster docs in collection a priori
I When a query matches a doc d , also return other docs in the cluster

containing d

Hope: if we do this: the query “car” will also return docs containing
“automobile”

I Because the clustering algorithm groups together docs containing “car”
with those containing “automobile”.

I Both types of documents contain words like “parts”, “dealer”,
“mercedes”, “road trip”.
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Exercise: Data set with clear cluster structure
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Desiderata for clustering

General goal: put related docs in the same cluster, put unrelated docs
in different clusters.

I We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set we are
clustering.

I Initially, we will assume the number of clusters K is given.
I Later: Semiautomatic methods for determining K

Secondary goals in clustering
I Avoid very small and very large clusters
I Define clusters that are easy to explain to the user
I Many others . . .
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Flat vs. Hierarchical clustering

Flat algorithms
I Usually start with a random (partial) partitioning of docs into groups
I Refine iteratively
I Main algorithm: K -means

Hierarchical algorithms
I Create a hierarchy
I Bottom-up, agglomerative
I Top-down, divisive
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Hard vs. Soft clustering

Hard clustering: Each document belongs to exactly one cluster.
I More common and easier to do

Soft clustering: A document can belong to more than one cluster.
I Makes more sense for applications like creating browsable hierarchies
I You may want to put sneakers in two clusters:

F sports apparel
F shoes

I You can only do that with a soft clustering approach.

This class: flat, hard clustering

Next time: hierarchical, hard clustering

Next week: latent semantic indexing, a form of soft clustering
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Flat algorithms

Flat algorithms compute a partition of N documents into a set of K
clusters.

Given: a set of documents and the number K

Find: a partition into K clusters that optimizes the chosen
partitioning criterion

Global optimization: exhaustively enumerate partitions, pick optimal
one

I Not tractable

Effective heuristic method: K -means algorithm
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K -means

Perhaps the best known clustering algorithm

Simple, works well in many cases

Use as default / baseline for clustering documents
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Document representations in clustering

Vector space model

As in vector space classification, we measure relatedness between
vectors by Euclidean distance . . .

. . . which is almost equivalent to cosine similarity.

Almost: centroids are not length-normalized.
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K -means: Basic idea

Each cluster in K -means is defined by a centroid.

Objective/partitioning criterion: minimize the average squared
difference from the centroid

Recall definition of centroid:

~µ(ω) =
1

|ω|
∑
~x∈ω

~x

where we use ω to denote a cluster.

We try to find the minimum average squared difference by iterating
two steps:

I reassignment: assign each vector to its closest centroid
I recomputation: recompute each centroid as the average of the vectors

that were assigned to it in reassignment
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K -means pseudocode (µk is centroid of ωk)

K -means({~x1, . . . ,~xN},K )
1 (~s1,~s2, . . . ,~sK )← SelectRandomSeeds({~x1, . . . ,~xN},K )
2 for k ← 1 to K
3 do ~µk ← ~sk
4 while stopping criterion has not been met
5 do for k ← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j ← arg minj ′ |~µj ′ − ~xn|
9 ωj ← ωj ∪ {~xn} (reassignment of vectors)

10 for k ← 1 to K
11 do ~µk ← 1

|ωk |
∑

~x∈ωk
~x (recomputation of centroids)

12 return {~µ1, . . . , ~µK}
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K -means is guaranteed to converge: Proof

RSS = sum of all squared distances between document vector and
closest centroid

RSS decreases during each reassignment step.
I because each vector is moved to a closer centroid

RSS decreases during each recomputation step.
I see next slide

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Assumption: Ties are broken consistently.

Finite set & monotonically decreasing → convergence
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Recomputation decreases average distance

RSS =
∑K

k=1 RSSk – the residual sum of squares (the “goodness” measure)

RSSk(~v) =
∑
~x∈ωk

‖~v − ~x‖2 =
∑
~x∈ωk

M∑
m=1

(vm − xm)2

∂RSSk(~v)

∂vm
=

∑
~x∈ωk

2(vm − xm) = 0

vm =
1

|ωk |
∑
~x∈ωk

xm

The last line is the componentwise definition of the centroid!
We minimize RSSk when the old centroid is replaced with the new centroid. RSS,
the sum of the RSSk , must then also decrease during recomputation.
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K -means is guaranteed to converge

But we don’t know how long convergence will take!

If we don’t care about a few docs switching back and forth, then
convergence is usually fast (< 10-20 iterations).

However, complete convergence can take many more iterations.
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Optimality of K -means

Convergence 6= optimality

Convergence does not mean that we converge to the optimal
clustering!

This is the great weakness of K -means.

If we start with a bad set of seeds, the resulting clustering can be
horrible.
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Initialization of K -means

Random seed selection is just one of many ways K -means can be
initialized.

Random seed selection is not very robust: It’s easy to get a
suboptimal clustering.

Better ways of computing initial centroids:
I Select seeds not randomly, but using some heuristic (e.g., filter out

outliers or find a set of seeds that has “good coverage” of the
document space)

I Use hierarchical clustering to find good seeds
I Select i (e.g., i = 10) different random sets of seeds, do a K -means

clustering for each, select the clustering with lowest RSS
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Time complexity of K -means

Computing one distance of two vectors is O(M).

Reassignment step: O(KNM) (we need to compute KN
document-centroid distances)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

Assume number of iterations bounded by I

Overall complexity: O(IKNM) – linear in all important dimensions

However: This is not a real worst-case analysis.

In pathological cases, complexity can be worse than linear.
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What is a good clustering?

Internal criteria
I Example of an internal criterion: RSS in K -means

But an internal criterion often does not evaluate the actual utility of a
clustering in the application.

Alternative: External criteria
I Evaluate with respect to a human-defined classification
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External criteria for clustering quality

Based on a gold standard data set, e.g., the Reuters collection we
also used for the evaluation of classification

Goal: Clustering should reproduce the classes in the gold standard

(But we only want to reproduce how documents are divided into
groups, not the class labels.)

First measure for how well we were able to reproduce the classes:
purity
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External criterion: Purity

purity(Ω,C ) =
1

N

∑
k

max
j
|ωk ∩ cj |

Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ}
is the set of classes.

For each cluster ωk : find class cj with most members nkj in ωk

Sum all nkj and divide by total number of points
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Example for computing purity

To compute purity: 5 = maxj |ω1 ∩ cj | (class x, cluster 1); 4 =
maxj |ω2 ∩ cj | (class o, cluster 2); and 3 = maxj |ω3 ∩ cj | (class �, cluster
3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.
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Another external criterion: Rand index

Purity can be increased easily by increasing K – a measure that does
not have this problem: Rand index.

Definition: RI = TP+TN
TP+FP+FN+TN

Based on 2x2 contingency table of all pairs of documents:
same cluster different clusters

same class true positives (TP) false negatives (FN)
different classes false positives (FP) true negatives (TN)

TP+FN+FP+TN is the total number of pairs.

TP+FN+FP+TN =
(N
2

)
for N documents.

Example:
(17
2

)
= 136 in o/�/x example

Each pair is either positive or negative (the clustering puts the two
documents in the same or in different clusters) . . .

. . . and either “true” (correct) or “false” (incorrect): the clustering
decision is correct or incorrect.
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Rand Index: Example

As an example, we compute RI for the o/�/x example. We first compute
TP + FP. The three clusters contain 6, 6, and 5 points, respectively, so
the total number of “positives” or pairs of documents that are in the same
cluster is:

TP + FP =

(
6
2

)
+

(
6
2

)
+

(
5
2

)
= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the � pairs in
cluster 3, and the x pair in cluster 3 are true positives:

TP =

(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly.
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Rand measure for the o/�/x example

same cluster different clusters
same class TP = 20 FN = 24
different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
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Two other external evaluation measures

Two other measures

Normalized mutual information (NMI)
I How much information does the clustering contain about the

classification?
I Singleton clusters (number of clusters = number of docs) have

maximum MI
I Therefore: normalize by entropy of clusters and classes

F measure
I Like Rand, but “precision” and “recall” can be weighted

Hahsler (SMU) CSE 7/5337 Spring 2012 46 / 55



Evaluation results for the o/�/x example

purity NMI RI F5
lower bound 0.0 0.0 0.0 0.0
maximum 1.0 1.0 1.0 1.0
value for example 0.71 0.36 0.68 0.46

All four measures range from 0 (really bad clustering) to 1 (perfect
clustering).
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How many clusters?

Number of clusters K is given in many applications.
I E.g., there may be an external constraint on K . Example: In the case

of Scatter-Gather, it was hard to show more than 10–20 clusters on a
monitor in the 90s.

What if there is no external constraint? Is there a “right” number of
clusters?

One way to go: define an optimization criterion
I Given docs, find K for which the optimum is reached.
I What optimization criterion can we use?
I We can’t use RSS or average squared distance from centroid as

criterion: always chooses K = N clusters.
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Exercise

Your job is to develop the clustering algorithms for a competitor to
news.google.com

You want to use K -means clustering.

How would you determine K?
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Simple objective function for K : Basic idea

Start with 1 cluster (K = 1)

Keep adding clusters (= keep increasing K )

Add a penalty for each new cluster

Then trade off cluster penalties against average squared distance from
centroid

Choose the value of K with the best tradeoff
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Simple objective function for K : Formalization

Given a clustering, define the cost for a document as (squared)
distance to centroid

Define total distortion RSS(K) as sum of all individual document
costs (corresponds to average distance)

Then: penalize each cluster with a cost λ

Thus for a clustering with K clusters, total cluster penalty is Kλ

Define the total cost of a clustering as distortion plus total cluster
penalty: RSS(K) + Kλ

Select K that minimizes (RSS(K) + Kλ)

Still need to determine good value for λ . . .
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Finding the “knee” in the curve

2 4 6 8 10

1
7
5
0

1
8
0
0

1
8
5
0

1
9
0
0

1
9
5
0

number of clusters

re
s
id

u
a
l 
s
u
m

 o
f 
s
q
u
a
re

s

Pick the number of clusters where curve “flattens”. Here: 4 or 9.
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Resources

Chapter 16 of IIR

Resources at http://ifnlp.org/ir
I Keith van Rijsbergen on the cluster hypothesis (he was one of the

originators)
I Bing/Carrot2/Clusty: search result clustering systems
I Stirling number: the number of distinct k-clusterings of n items
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