CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16)

Michael Hahsler

Southern Methodist University

These slides are largely based on the slides by Hinrich Schütze Institute for Natural Language Processing, University of Stuttgart http://informationretrieval.org

Spring 2012

Overview

Clustering: Introduction

2 Clustering in IR

Which machine learning method to choose

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?
 - ★ For an unstable problem, it's better to use a simple and robust classifier.

- What is clustering?
- Applications of clustering in information retrieval
- K-means algorithm
- Evaluation of clustering
- How many clusters?

Outline

1 Clustering: Introduction

2 Clustering in IR

• How many clusters?

Hahsler (SMU)

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.

Exercise: Data set with clear cluster structure

Propose algorithm for finding the cluster structure in this example

- Classification: supervised learning
- Clustering: unsupervised learning
- Classification: Classes are human-defined and part of the input to the learning algorithm.
- Clustering: Clusters are inferred from the data without human input.
 - However, there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents,

. . .

Outline

Clustering: Introduction

2 Clustering in IR

• How many clusters?

Hahsler (SMU)

- **Cluster hypothesis.** Documents in the same cluster behave similarly with respect to relevance to information needs.
- All applications of clustering in IR are based (directly or indirectly) on the cluster hypothesis.
- Van Rijsbergen's original wording (1979): "closely associated documents tend to be relevant to the same requests".

Applications of clustering in IR

application	what is	benefit		
	clustered?			
search result clustering	search results	more effective infor- mation presentation to user		
Scatter-Gather	(subsets of) collection	alternative user inter- face: "search without typing"		
collection clustering	collection	effective information presentation for ex- ploratory browsing		
cluster-based retrieval	collection	higher efficiency: faster search		

Search result clustering for better navigation

Vivísimo*	jaguar the Web Search Search Help
Clustered Results	Top 208 results of at least 20,373,974 retrieved for the query jaguar (Details)
 iaguar (208) Cars (74) Club (34) Cat (23) Animal (13) 	 <u>Jag-lovers - THE source for all Jaguar information</u> (new window) [tmme] [cache] [preview] [clusters] Internet! Serving Enthusiasts since 1993 The Jag-lovers Web Currently with 40661 members The Premier Jaguar Cars web resource for all enthusiasts Lists and Forums Jag-lovers originally evolved around its www.jag-lovers.org - Open Directory 2, Wisenut 8, Ask Jeeves 8, MSN 9, Locksmart 12, MSN Search 18
 ⊕ ► <u>Restoration</u> (10) ⊕ ► <u>Mac OS X</u> (8) ⊕ ► <u>Jaguar Model</u> (8) ⊕ ► <u>Request</u> (5) 	2. Jaguar Cars [new window] [frame] [cache] [preview] [clustere] [] redirected to www.jaguar.com www.jaguarcars.com - Looksmart 1, MSN 2, Lycos 3, Wisenut 6, MSN Search 9, MSN 29
⊕ ► <u>Mark Webber</u> (6) ► <u>Maya</u> (5) ▼ <u>More</u>	3. <u>http://www.jaguar.com/</u> [new window] [fmme] [preview] [clustern] www.jaguar.com - MSN 1, Ask Jeeves 1, MSN Search 3, Lycos 9
Find in clustens: Enter Keywords	 <u>Apple - Mac OS X</u> [new window] [fmme] [preview] [clusters] Learn about the new OS X Server, designed for the Internet, digital media and workgroup management. Download a technical factsheet. www.apple.com/macosx - Wisenut 1, MSN 3, Looksmart 26

Scatter-Gather

Global navigation: Yahoo

CATEGORIES (Mhat's This?)

Most Popular Society and Culture

- Crime (5453) NEWI
- Cultures and Groups (11025) NEW!
- Environment and Nature (8558) NEW!
- Families (1215)
- Food and Drink (9776) NEW!
- Holidays and Observances (3333)

Additional Society and Culture Categories

- <u>Advice</u> (48)
- <u>Chats and Forums</u> (27)
- Cultural Policy (10)
- Death and Dying (394)
- Disabilities (1293)
- Employment and Work@
- Etiquette (54)
- Events (27)
- Fashion@

SITE LISTINGS By Popularity | Alphabetical (What's This?)

- Issues and Causes (4842)
- Mythology and Folklore (984)
- <u>People</u> (16351)
- <u>Relationships</u> (595)
- <u>Religion and Spirituality</u> (37533)
- Sexuality (2812) NEW!
- <u>Gender</u> (21)
- Home and Garden (1080) NEW!
- Magazines (164)
- Museums and Exhibits (6052)
- Pets@
- <u>Reunions</u> (228)
- Social Organizations (338)
- Web Directories (6)
- Weddings (371)

Site

Global navigation: MESH (upper level)

MeSH Tree Structures - 2008

Return to Entry Page

- 1. + Anatomy [A]
- 2. + Organisms [B]
- 3. Diseases [C]
 - Bacterial Infections and Mycoses [C01] +

 - <u>Virus Diseases [C02] +</u>
 <u>Parasitic Diseases [C03] +</u>

 - Neoplasms [C04] +
 Musculoskeletal Diseases [C05] +
 - Digestive System Diseases [C06] +
 - Stomatognathic Diseases [C07] +
 - Respiratory Tract Diseases [C08] +
 - Otorhinolaryngologic Diseases [C09] +
 - Nervous System Diseases [C10] +
 - Eye Diseases [C11] +
 - Male Urogenital Diseases [C12] +
 - Female Urogenital Diseases and Pregnancy Complications [C13] +
 - Cardiovascular Diseases [C14] +

 - Carl universational Constants [1:15] +
 Congenital, Hereditary, and Neonatal Diseases and Abnormalities [C16] +
 Skin and Connective Tissue Diseases [C17] +
 Nutritional and Metabolic Diseases [C18] +

 - Endocrine System Diseases [C19] +
 - Immune System Diseases [C20] +
 - Disorders of Environmental Origin [C21] +
 - Animal Diseases [C22] +
 - Pathological Conditions, Signs and Symptoms [C23] +
- 4.
 Chemicals and Drugs [D]
- 5. Analytical. Diagnostic and Therapeutic Techniques and Equipment [E]
- 6.
 Psychiatry and Psychology [F]
- 7.
 Biological Sciences [G]
- 8. Natural Sciences [H]
- 9.
 Anthropology, Education, Sociology and Social Phenomena [I]
- 10. Technology, Industry, Agriculture [J]
- 11. Humanities [K]

Global navigation: MESH (lower level)

Neoplasms [C04] Cysts [C04.182] + Hamartoma [C04.445] + ▶ Neoplasms by Histologic Type [C04.557] Histiocytic Disorders, Malignant [C04,557,227] + Leukemia [C04.557.337] + Lymphatic Vessel Tumors [C04.557.375] + Lymphoma [C04.557.386] + Neoplasms, Complex and Mixed [C04,557,435] + Neoplasms, Connective and Soft Tissue [C04.557.450] + Neoplasms, Germ Cell and Embryonal [C04.557.465] + Neoplasms, Glandular and Epithelial [C04.557.470] + Neoplasms, Gonadal Tissue [C04,557,475] + Neoplasms, Nerve Tissue [C04.557.580] + Neoplasms, Plasma Cell [C04.557.595] + Neoplasms, Vascular Tissue [C04.557.645] + Nevi and Melanomas [C04.557.665] + Odontogenic Tumors [C04.557.695] + Neoplasms by Site [C04.588] + Neoplasms, Experimental [C04.619] + Neoplasms, Hormone-Dependent [C04.626] Neoplasms, Multiple Primary [C04.651] + Neoplasms, Post-Traumatic [C04.666] Neoplasms, Radiation-Induced [C04.682] + Neoplasms, Second Primary [C04.692] Neoplastic Processes [C04.697] + Neoplastic Syndromes, Hereditary [C04.700] + Paraneoplastic Syndromes [C04.730] + Precancerous Conditions [C04.834] + Pregnancy Complications, Neoplastic [C04.850] + Tumor Virus Infections [C04.925] +

- Note: Yahoo/MESH are not examples of clustering.
- But they are well known examples for using a global hierarchy for navigation.
- Some examples for global navigation/exploration based on clustering:
 - Cartia
 - Themescapes
 - Google News

Global navigation combined with visualization (1)

Hahsler (SMU)

Global navigation combined with visualization (2)

Hahsler (SMU)

Global clustering for navigation: Google News

http://news.google.com

Clustering for improving recall

- To improve search recall:
 - Cluster docs in collection a priori
 - When a query matches a doc d, also return other docs in the cluster containing d
- Hope: if we do this: the query "car" will also return docs containing "automobile"
 - Because the clustering algorithm groups together docs containing "car" with those containing "automobile".
 - Both types of documents contain words like "parts", "dealer", "mercedes", "road trip".

Exercise: Data set with clear cluster structure

Propose algorithm for finding the cluster structure in this example

- General goal: put related docs in the same cluster, put unrelated docs in different clusters.
 - We'll see different ways of formalizing this.
- The number of clusters should be appropriate for the data set we are clustering.
 - Initially, we will assume the number of clusters K is given.
 - Later: Semiautomatic methods for determining K
- Secondary goals in clustering
 - Avoid very small and very large clusters
 - Define clusters that are easy to explain to the user
 - Many others . . .

Flat algorithms

- Usually start with a random (partial) partitioning of docs into groups
- Refine iteratively
- Main algorithm: K-means
- Hierarchical algorithms
 - Create a hierarchy
 - Bottom-up, agglomerative
 - Top-down, divisive

Hard vs. Soft clustering

• Hard clustering: Each document belongs to exactly one cluster.

- More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put sneakers in two clusters:
 - ★ sports apparel
 - ★ shoes
 - You can only do that with a soft clustering approach.
- This class: flat, hard clustering
- Next time: hierarchical, hard clustering
- Next week: latent semantic indexing, a form of soft clustering

- Flat algorithms compute a partition of *N* documents into a set of *K* clusters.
- Given: a set of documents and the number K
- Find: a partition into K clusters that optimizes the chosen partitioning criterion
- Global optimization: exhaustively enumerate partitions, pick optimal one
 - Not tractable
- Effective heuristic method: K-means algorithm

Outline

1 Clustering: Introduction

2 Clustering in IR

5 How many clusters?

Hahsler (SMU)

- Perhaps the best known clustering algorithm
- Simple, works well in many cases
- Use as default / baseline for clustering documents

- Vector space model
- As in vector space classification, we measure relatedness between vectors by Euclidean distance ...
- ... which is almost equivalent to cosine similarity.
- Almost: centroids are not length-normalized.

K-means: Basic idea

- Each cluster in *K*-means is defined by a centroid.
- Objective/partitioning criterion: minimize the average squared difference from the centroid
- Recall definition of centroid:

$$ec{\mu}(\omega) = rac{1}{|\omega|} \sum_{ec{x} \in \omega} ec{x}$$

where we use ω to denote a cluster.

- We try to find the minimum average squared difference by iterating two steps:
 - reassignment: assign each vector to its closest centroid
 - recomputation: recompute each centroid as the average of the vectors that were assigned to it in reassignment

K-means pseudocode (μ_k is centroid of ω_k)

$$\begin{array}{ll} \mathsf{K}\text{-MEANS}(\{\vec{x}_1,\ldots,\vec{x}_N\},\mathsf{K}) \\ 1 & (\vec{s}_1,\vec{s}_2,\ldots,\vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1,\ldots,\vec{x}_N\},\mathsf{K}) \\ 2 & \text{for } k \leftarrow 1 \text{ to } \mathsf{K} \\ 3 & \text{do } \vec{\mu}_k \leftarrow \vec{s}_k \\ 4 & \text{while stopping criterion has not been met} \\ 5 & \text{do for } k \leftarrow 1 \text{ to } \mathsf{K} \\ 6 & \text{do } \omega_k \leftarrow \{\} \\ 7 & \text{for } n \leftarrow 1 \text{ to } \mathsf{N} \\ 8 & \text{do } j \leftarrow \arg\min_{j'} |\vec{\mu}_{j'} - \vec{x}_n| \\ 9 & \omega_j \leftarrow \omega_j \cup \{\vec{x}_n\} \quad (reassignment \ of \ vectors) \\ 10 & \text{for } k \leftarrow 1 \text{ to } \mathsf{K} \\ 11 & \text{do } \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} \quad (recomputation \ of \ centroids) \\ 12 & \text{return } \{\vec{\mu}_1,\ldots,\vec{\mu}_K\} \end{array}$$

K-means is guaranteed to converge: Proof

- RSS = sum of all squared distances between document vector and closest centroid
- RSS decreases during each reassignment step.
 - because each vector is moved to a closer centroid
- RSS decreases during each recomputation step.
 - see next slide
- There is only a finite number of clusterings.
- Thus: We must reach a fixed point.
- Assumption: Ties are broken consistently.
- Finite set & monotonically decreasing \rightarrow convergence

Recomputation decreases average distance

 $RSS = \sum_{k=1}^{K} RSS_k$ – the residual sum of squares (the "goodness" measure)

$$RSS_k(\vec{v}) = \sum_{\vec{x} \in \omega_k} \|\vec{v} - \vec{x}\|^2 = \sum_{\vec{x} \in \omega_k} \sum_{m=1}^M (v_m - x_m)^2$$
$$\frac{\partial RSS_k(\vec{v})}{\partial v_m} = \sum_{\vec{x} \in \omega_k} 2(v_m - x_m) = 0$$

$$\mathbf{v}_m = \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} x_m$$

The last line is the componentwise definition of the centroid! We minimize RSS_k when the old centroid is replaced with the new centroid. RSS, the sum of the RSS_k , must then also decrease during recomputation.

- But we don't know how long convergence will take!
- If we don't care about a few docs switching back and forth, then convergence is usually fast (< 10-20 iterations).
- However, complete convergence can take many more iterations.

- Convergence \neq optimality
- Convergence does not mean that we converge to the optimal clustering!
- This is the great weakness of K-means.
- If we start with a bad set of seeds, the resulting clustering can be horrible.

- Random seed selection is just one of many ways *K*-means can be initialized.
- Random seed selection is not very robust: It's easy to get a suboptimal clustering.
- Better ways of computing initial centroids:
 - Select seeds not randomly, but using some heuristic (e.g., filter out outliers or find a set of seeds that has "good coverage" of the document space)
 - Use hierarchical clustering to find good seeds
 - Select i (e.g., i = 10) different random sets of seeds, do a K-means clustering for each, select the clustering with lowest RSS

Time complexity of K-means

- Computing one distance of two vectors is O(M).
- Reassignment step: *O*(*KNM*) (we need to compute *KN* document-centroid distances)
- Recomputation step: O(NM) (we need to add each of the document's < M values to one of the centroids)
- Assume number of iterations bounded by I
- Overall complexity: O(IKNM) linear in all important dimensions
- However: This is not a real worst-case analysis.
- In pathological cases, complexity can be worse than linear.

Outline

1 Clustering: Introduction

2 Clustering in IR

How many clusters?

Hahsler (SMU)

- Internal criteria
 - Example of an internal criterion: RSS in K-means
- But an internal criterion often does not evaluate the actual utility of a clustering in the application.
- Alternative: External criteria
 - Evaluate with respect to a human-defined classification

External criteria for clustering quality

- Based on a gold standard data set, e.g., the Reuters collection we also used for the evaluation of classification
- Goal: Clustering should reproduce the classes in the gold standard
- (But we only want to reproduce how documents are divided into groups, not the class labels.)
- First measure for how well we were able to reproduce the classes: purity

External criterion: Purity

$$\mathsf{purity}(\Omega, C) = \frac{1}{N} \sum_{k} \max_{j} |\omega_{k} \cap c_{j}|$$

- Ω = {ω₁, ω₂,..., ω_K} is the set of clusters and C = {c₁, c₂,..., c_J} is the set of classes.
- For each cluster ω_k : find class c_i with most members n_{ki} in ω_k
- Sum all n_{ki} and divide by total number of points

Example for computing purity

To compute purity: $5 = \max_j |\omega_1 \cap c_j|$ (class x, cluster 1); $4 = \max_j |\omega_2 \cap c_j|$ (class o, cluster 2); and $3 = \max_j |\omega_3 \cap c_j|$ (class \diamond , cluster 3). Purity is $(1/17) \times (5 + 4 + 3) \approx 0.71$.

Another external criterion: Rand index

- Purity can be increased easily by increasing K a measure that does not have this problem: Rand index.
- Definition: $RI = \frac{TP+TN}{TP+FP+FN+TN}$
- Based on 2x2 contingency table of all pairs of documents:

same clusterdifferent clusterssame classtrue positives (TP)false negatives (FN)different classesfalse positives (FP)true negatives (TN)

- TP+FN+FP+TN is the total number of pairs.
- TP+FN+FP+TN = $\binom{N}{2}$ for *N* documents.
- Example: $\binom{17}{2} = 136$ in $o/\diamond/x$ example
- Each pair is either positive or negative (the clustering puts the two documents in the same or in different clusters) ...
- ... and either "true" (correct) or "false" (incorrect): the clustering decision is correct or incorrect.

Rand Index: Example

As an example, we compute RI for the $o/\diamond/x$ example. We first compute TP + FP. The three clusters contain 6, 6, and 5 points, respectively, so the total number of "positives" or pairs of documents that are in the same cluster is:

$$\mathsf{TP} + \mathsf{FP} = \left(\begin{array}{c} 6\\2\end{array}\right) + \left(\begin{array}{c} 6\\2\end{array}\right) + \left(\begin{array}{c} 5\\2\end{array}\right) = 40$$

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the \diamond pairs in cluster 3, and the x pair in cluster 3 are true positives:

$$\mathsf{TP} = \left(\begin{array}{c} 5\\2\end{array}\right) + \left(\begin{array}{c} 4\\2\end{array}\right) + \left(\begin{array}{c} 3\\2\end{array}\right) + \left(\begin{array}{c} 2\\2\end{array}\right) = 20$$

Thus, FP = 40 - 20 = 20. FN and TN are computed similarly.

	same cluster	different clusters
same class	TP = 20	FN = 24
different classes	FP = 20	TN = 72

RI is then $(20 + 72)/(20 + 20 + 24 + 72) \approx 0.68$.

- Two other measures
- Normalized mutual information (NMI)
 - How much information does the clustering contain about the classification?
 - Singleton clusters (number of clusters = number of docs) have maximum MI
 - Therefore: normalize by entropy of clusters and classes
- F measure
 - ▶ Like Rand, but "precision" and "recall" can be weighted

Evaluation results for the $o/\diamond/x$ example

	purity	NMI	RI	F_5
lower bound	0.0	0.0	0.0	0.0
maximum	1.0	1.0	1.0	1.0
value for example	0.71	0.36	0.68	0.46

All four measures range from 0 (really bad clustering) to 1 (perfect clustering).

Outline

1 Clustering: Introduction

2 Clustering in IR

Hahsler (SMU)

How many clusters?

- Number of clusters K is given in many applications.
 - ▶ E.g., there may be an external constraint on *K*. Example: In the case of Scatter-Gather, it was hard to show more than 10–20 clusters on a monitor in the 90s.
- What if there is no external constraint? Is there a "right" number of clusters?
- One way to go: define an optimization criterion
 - Given docs, find *K* for which the optimum is reached.
 - What optimization criterion can we use?
 - ► We can't use RSS or average squared distance from centroid as criterion: always chooses K = N clusters.

- Your job is to develop the clustering algorithms for a competitor to news.google.com
- You want to use *K*-means clustering.
- How would you determine K?

Simple objective function for K: Basic idea

- Start with 1 cluster (K = 1)
- Keep adding clusters (= keep increasing K)
- Add a penalty for each new cluster
- Then trade off cluster penalties against average squared distance from centroid
- Choose the value of K with the best tradeoff

Simple objective function for K: Formalization

- Given a clustering, define the cost for a document as (squared) distance to centroid
- Define total distortion RSS(K) as sum of all individual document costs (corresponds to average distance)
- Then: penalize each cluster with a cost λ
- Thus for a clustering with K clusters, total cluster penalty is $K\lambda$
- Define the total cost of a clustering as distortion plus total cluster penalty: RSS(K) + $K\lambda$
- Select K that minimizes $(RSS(K) + K\lambda)$
- Still need to determine good value for λ

Finding the "knee" in the curve

Pick the number of clusters where curve "flattens". Here: 4 or 9.

- What is clustering?
- Applications of clustering in information retrieval
- K-means algorithm
- Evaluation of clustering
- How many clusters?

- Chapter 16 of IIR
- Resources at http://ifnlp.org/ir
 - Keith van Rijsbergen on the cluster hypothesis (he was one of the originators)
 - Bing/Carrot2/Clusty: search result clustering systems
 - ▶ Stirling number: the number of distinct *k*-clusterings of *n* items